Analysis of the Purcell effect in photonic and plasmonic crystals with losses

被引:69
作者
Iwase, Hideo [1 ]
Englund, Dirk [1 ,2 ]
Vuckovic, Jelena [1 ]
机构
[1] Stanford Univ, Ginzton Lab, Stanford, CA 94305 USA
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 16期
关键词
SPONTANEOUS EMISSION; EXTRACTION EFFICIENCY; ENHANCEMENT; LIGHT; GAIN; PROPAGATION; WAVES; LASER;
D O I
10.1364/OE.18.016546
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the spontaneous emission rate of emitter in a periodically patterned metal or dielectric membrane in the picture of a multimode field of damped Bloch states. For Bloch states in dielectric structures, the approach fully describes the Purcell effect in photonic crystal or spatially coupled cavities with losses. For a metal membrane, the Purcell factor depends on resistive loss at the resonant frequency of surface plasmon polariton (SPP). Analysis of an InP-Au-InP structure indicates that the SPP's Purcell effect can exceed a value of 50 in the ultraviolet. For a plasmonic crystal, we find a position-dependent Purcell enhancement with a mean value similar to the unpatterned membrane. (C) 2010 Optical Society of America
引用
收藏
页码:16546 / 16560
页数:15
相关论文
共 50 条
  • [31] Spectrally and Spatially Resolved Smith-Purcell Radiation in Plasmonic Crystals with Short-Range Disorder
    Kaminer, I.
    Kooi, S. E.
    Shiloh, R.
    Zhen, B.
    Shen, Y.
    Lopez, J. J.
    Remez, R.
    Skirlo, S. A.
    Yang, Y.
    Joannopoulos, J. D.
    Arie, A.
    Soljacic, M.
    PHYSICAL REVIEW X, 2017, 7 (01):
  • [32] Nanoscale plasmonic resonators with high Purcell factor: Spontaneous and stimulated emission
    Goldys, Ewa M.
    Deng, Wei
    Calander, Nils P.
    Drozdowicz-Tomsia, K.
    Jin, Dayong
    COLLOIDAL QUANTUM DOTS/NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VI, 2011, 7909
  • [33] Investigation of the size effect for photonic crystals
    Liu, M.
    Xu, W.
    Bai, J.
    Chua, C. K.
    Wei, J.
    Li, Z.
    Gao, Y.
    Kim, D. H.
    Zhou, K.
    NANOTECHNOLOGY, 2016, 27 (40)
  • [34] Purcell effect in two-dimensional photonic crystal slabs with triangular lattice
    Dyakov, Sergey A.
    Fradkin, Ilia M.
    Yurasov, Dmitry, V
    Zinovyev, Vladimir A.
    Tikhodeev, Sergei G.
    Gippius, Nikolay A.
    PHYSICAL REVIEW B, 2023, 108 (15)
  • [35] Enhancing Nonlinear Interactions by the Superposition of Plasmonic Lattices on χ(2)-Nonlinear Photonic Crystals
    Gomez-Tornero, Alejandro
    Palacios, Pablo
    Molina, Pablo
    Carretero-Palacios, Sol
    Bausa, Luisa E.
    Ramirez, Mariola O.
    ACS PHOTONICS, 2021, 8 (08) : 2529 - 2537
  • [36] Absorptive photonic crystals in 1D
    Morozov, G. V.
    Placido, F.
    Sprung, D. W. L.
    JOURNAL OF OPTICS, 2011, 13 (03)
  • [37] Purcell effect at the percolation transition
    Szilard, D.
    Kort-Kamp, W. J. M.
    Rosa, F. S. S.
    Pinheiro, F. A.
    Farina, C.
    PHYSICAL REVIEW B, 2016, 94 (13)
  • [38] Photonic crystals as metamaterials
    Foteinopoulou, S.
    PHYSICA B-CONDENSED MATTER, 2012, 407 (20) : 4056 - 4061
  • [39] Suppression of Photonic Bandgap Reflection by Localized Surface Plasmons in Self-Assembled Plasmonic-Photonic Crystals
    Lin, Ti-Li
    Lin, Jiun-Hong
    Guo, Jun-Ting
    Kan, Hung-Chih
    ADVANCED OPTICAL MATERIALS, 2015, 3 (10): : 1470 - 1475
  • [40] State-of-the-art plasmonic crystals for molecules fluorescence detection
    Baburin, Aleksandr S.
    Gritchenko, Anton S.
    Orikovsky, Nikolay A.
    Dobronosova, Alina A.
    Rodionov, Ilya A.
    Balykin, Victor, I
    Melentiev, Pavel N.
    OPTICAL MATERIALS EXPRESS, 2019, 9 (03): : 1173 - 1179