Isotropic to anisotropic transition in a fractional quantum Hall state

被引:48
作者
Mulligan, Michael [1 ]
Nayak, Chetan [2 ,3 ]
Kachru, Shamit [2 ,4 ,5 ,6 ]
机构
[1] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Microsoft Stn Q, Santa Barbara, CA 93106 USA
[4] Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[5] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[6] Stanford Univ, SLAC, Stanford, CA 94305 USA
来源
PHYSICAL REVIEW B | 2010年 / 82卷 / 08期
关键词
MASSIVE GAUGE-THEORIES; MAGNETIC-FIELD; EDGE; INSTABILITY; DEGENERACY; TRANSPORT;
D O I
10.1103/PhysRevB.82.085102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study an Abelian gauge theory in 2 + 1 dimensions which has surprising theoretical and phenomenological features. The theory has a vanishing coefficient for the square of the electric field e(i)(2), characteristic of a quantum critical point with dynamical critical exponent z = 2, and a level-k Chern-Simons coupling, which is marginal at this critical point. For k = 0, this theory is dual to a free z = 2 scalar field theory describing a quantum Lifshitz transition, but k not equal 0 renders the scalar description nonlocal. The k not equal 0 theory exhibits properties intermediate between the (topological) pure Chern-Simons theory and the scalar theory. For instance, the Chern-Simons term does not make the gauge field massive. Nevertheless, there are chiral edge modes when the theory is placed on a space with boundary and a nontrivial ground-state degeneracy k(g) when it is placed on a finite-size Riemann surface of genus g. The coefficient of e(i)(2) is the only relevant coupling; it tunes the system through a quantum phase transition between an isotropic fractional quantum Hall state and an anisotropic fractional quantum Hall state. We compute zero-temperature transport coefficients in both phases and at the critical point and comment briefly on the relevance of our results to recent experiments.
引用
收藏
页数:13
相关论文
共 30 条
[1]   Nematic valley ordering in quantum Hall systems [J].
Abanin, D. A. ;
Parameswaran, S. A. ;
Kivelson, S. A. ;
Sondhi, S. L. .
PHYSICAL REVIEW B, 2010, 82 (03)
[2]   Topological order and conformal quantum critical points [J].
Ardonne, E ;
Fendley, P ;
Fradkin, E .
ANNALS OF PHYSICS, 2004, 310 (02) :493-551
[3]   ANOMALIES AND FERMION ZERO MODES ON STRINGS AND DOMAIN-WALLS [J].
CALLAN, CG ;
HARVEY, JA .
NUCLEAR PHYSICS B, 1985, 250 (03) :427-436
[4]   Compact z=2 Electrodynamics in 2+1 Dimensions: Confinement with Gapless Modes [J].
Das, Sumit R. ;
Murthy, Ganpathy .
PHYSICAL REVIEW LETTERS, 2010, 104 (18)
[5]   3-DIMENSIONAL MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R ;
TEMPLETON, S .
PHYSICAL REVIEW LETTERS, 1982, 48 (15) :975-978
[6]   TOPOLOGICALLY MASSIVE GAUGE-THEORIES [J].
DESER, S ;
JACKIW, R ;
TEMPLETON, S .
ANNALS OF PHYSICS, 1982, 140 (02) :372-411
[7]   Bipartite Rokhsar-Kivelson points and cantor deconfinement [J].
Fradkin, E ;
Huse, DA ;
Moessner, R ;
Oganesyan, V ;
Sondhi, SL .
PHYSICAL REVIEW B, 2004, 69 (22) :224415-1
[8]  
Fradkin E., 1990, Modern Physics Letters B, V4, P225, DOI 10.1142/S0217984990000295
[9]   Nematic Fermi Fluids in Condensed Matter Physics [J].
Fradkin, Eduardo ;
Kivelson, Steven A. ;
Lawler, Michael J. ;
Eisenstein, James P. ;
Mackenzie, Andrew P. .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 1, 2010, 1 :153-178
[10]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479