Gromov Hyperbolicity in Mycielskian Graphs

被引:5
|
作者
Granados, Ana [1 ]
Pestana, Domingo [2 ]
Portilla, Ana [1 ]
Rodriguez, Jose M. [2 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, Ave Valle 34, Madrid 28003, Spain
[2] Univ Carlos III Madrid, Dept Math, Ave Univ 30, Leganes 28911, Spain
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 08期
关键词
extremal problems on graphs; Mycielskian graphs; geodesics; Gromov hyperbolicity; SMALL-WORLD; DECOMPOSITION; METRICS;
D O I
10.3390/sym9080131
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph G(M) is hyperbolic and that delta(G(M)) is comparable to diam (G(M)). Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs; in fact, it is shown that 5/4 <= delta(G(M)) <= 5/2. Graphs G whose Mycielskian have hyperbolicity constant 5/4 or 5/2 are characterized. The hyperbolicity constants of the Mycielskian of path, cycle, complete and complete bipartite graphs are calculated explicitly. Finally, information on d (G) just in terms of d (GM) is obtained.
引用
收藏
页数:20
相关论文
共 50 条
  • [42] Gromov hyperbolicity of Denjoy domains
    Alvarez, Venancio
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    GEOMETRIAE DEDICATA, 2006, 121 (01) : 221 - 245
  • [43] Effect of Gromov-Hyperbolicity Parameter on Cuts and Expansions in Graphs and Some Algorithmic Implications
    Bhaskar Das Gupta
    Marek Karpinski
    Nasim Mobasheri
    Farzane Yahyanejad
    Algorithmica, 2018, 80 : 772 - 800
  • [44] A VERY SIMPLE CHARACTERIZATION OF GROMOV HYPERBOLICITY FOR A SPECIAL KIND OF DENJOY DOMAINS
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (03) : 565 - 583
  • [45] Effect of Gromov-Hyperbolicity Parameter on Cuts and Expansions in Graphs and Some Algorithmic Implications
    Das Gupta, Bhaskar
    Karpinski, Marek
    Mobasheri, Nasim
    Yahyanejad, Farzane
    ALGORITHMICA, 2018, 80 (02) : 772 - 800
  • [46] Characterization of Gromov hyperbolic short graphs
    Manuel Rodriguez, Jose
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (02) : 197 - 212
  • [47] Gromov hyperbolicity through decomposition of metrics spaces II
    Ana Portilla
    José M. Rodríguez
    Eva Tourís
    The Journal of Geometric Analysis, 2004, 14 : 123 - 149
  • [48] GROMOV HYPERBOLICITY OF STRONGLY PSEUDOCONVEX ALMOST COMPLEX MANIFOLDS
    Bertrand, Florian
    Gaussier, Herve
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (09) : 3901 - 3913
  • [49] A REAL VARIABLE CHARACTERIZATION OF GROMOV HYPERBOLICITY OF FLUTE SURFACES
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    OSAKA JOURNAL OF MATHEMATICS, 2011, 48 (01) : 179 - 207
  • [50] Gromov hyperbolicity of Denjoy domains through fundamental domains
    Hasto, Peter
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (3-4): : 295 - 310