Gromov Hyperbolicity in Mycielskian Graphs

被引:5
|
作者
Granados, Ana [1 ]
Pestana, Domingo [2 ]
Portilla, Ana [1 ]
Rodriguez, Jose M. [2 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, Ave Valle 34, Madrid 28003, Spain
[2] Univ Carlos III Madrid, Dept Math, Ave Univ 30, Leganes 28911, Spain
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 08期
关键词
extremal problems on graphs; Mycielskian graphs; geodesics; Gromov hyperbolicity; SMALL-WORLD; DECOMPOSITION; METRICS;
D O I
10.3390/sym9080131
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph G(M) is hyperbolic and that delta(G(M)) is comparable to diam (G(M)). Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs; in fact, it is shown that 5/4 <= delta(G(M)) <= 5/2. Graphs G whose Mycielskian have hyperbolicity constant 5/4 or 5/2 are characterized. The hyperbolicity constants of the Mycielskian of path, cycle, complete and complete bipartite graphs are calculated explicitly. Finally, information on d (G) just in terms of d (GM) is obtained.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Hyperbolicity of Direct Products of Graphs
    Carballosa, Walter
    de la Cruz, Amauris
    Martinez-Perez, Alvaro
    Rodriguez, Jose M.
    SYMMETRY-BASEL, 2018, 10 (07):
  • [32] Gromov hyperbolic cubic graphs
    Pestana, Domingo
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (03): : 1141 - 1151
  • [33] Gromov hyperbolicity of Denjoy Domains
    Venancio Alvarez
    Ana Portilla
    Jose M. Rodriguez
    Eva Touris
    Geometriae Dedicata, 2006, 121 : 221 - 245
  • [34] Gromov Hyperbolicity of Riemann Surfaces
    José M.RODRíGUEZ
    EVa TOURIS
    Acta Mathematica Sinica(English Series), 2007, 23 (02) : 209 - 228
  • [35] Gromov hyperbolicity through decomposition of metric spaces
    José M. Rodríguez
    Eva Tourís
    Acta Mathematica Hungarica, 2004, 103 : 107 - 138
  • [36] The topology of balls in Riemannian surfaces and Gromov hyperbolicity
    Gonzalo, Jesus
    Portilla, Ana
    Rodriguez, Jose M.
    Touris, Eva
    MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (3-4) : 741 - 760
  • [37] Gromov Hyperbolicity of Riemann Surfaces
    José M. Rodríguez
    Eva Tourís
    Acta Mathematica Sinica, English Series, 2007, 23 : 209 - 228
  • [38] Geometric characterizations of Gromov hyperbolicity
    Zoltán M. Balogh
    Stephen M. Buckley
    Inventiones mathematicae, 2003, 153 : 261 - 301
  • [39] Bounds on Gromov hyperbolicity constant
    Verónica Hernández
    Domingo Pestana
    José M. Rodríguez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 321 - 342
  • [40] Gromov hyperbolicity of Riemann surfaces
    Rodriguez, Jose M.
    Touris, Eva
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (02) : 209 - 228