Gromov Hyperbolicity in Mycielskian Graphs

被引:5
|
作者
Granados, Ana [1 ]
Pestana, Domingo [2 ]
Portilla, Ana [1 ]
Rodriguez, Jose M. [2 ]
机构
[1] St Louis Univ, Dept Math & Comp Sci, Ave Valle 34, Madrid 28003, Spain
[2] Univ Carlos III Madrid, Dept Math, Ave Univ 30, Leganes 28911, Spain
来源
SYMMETRY-BASEL | 2017年 / 9卷 / 08期
关键词
extremal problems on graphs; Mycielskian graphs; geodesics; Gromov hyperbolicity; SMALL-WORLD; DECOMPOSITION; METRICS;
D O I
10.3390/sym9080131
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Since the characterization of Gromov hyperbolic graphs seems a too ambitious task, there are many papers studying the hyperbolicity of several classes of graphs. In this paper, it is proven that every Mycielskian graph G(M) is hyperbolic and that delta(G(M)) is comparable to diam (G(M)). Furthermore, we study the extremal problems of finding the smallest and largest hyperbolicity constants of such graphs; in fact, it is shown that 5/4 <= delta(G(M)) <= 5/2. Graphs G whose Mycielskian have hyperbolicity constant 5/4 or 5/2 are characterized. The hyperbolicity constants of the Mycielskian of path, cycle, complete and complete bipartite graphs are calculated explicitly. Finally, information on d (G) just in terms of d (GM) is obtained.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Bounds on Gromov hyperbolicity constant
    Hernandez, Veronica
    Pestana, Domingo
    Rodriguez, Jose M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 321 - 342
  • [22] Gromov hyperbolic graphs
    Bermudo, Sergio
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Vilaire, Jean-Marie
    DISCRETE MATHEMATICS, 2013, 313 (15) : 1575 - 1585
  • [23] Hyperbolicity in median graphs
    Sigarreta, Jose M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (04): : 455 - 467
  • [24] A CHARACTERIZATION OF GROMOV HYPERBOLICITY OF SURFACES WITH VARIABLE NEGATIVE CURVATURE
    Portilla, Ana
    Touris, Eva
    PUBLICACIONS MATEMATIQUES, 2009, 53 (01) : 83 - 110
  • [25] On the hyperbolicity constant in graphs
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Vilaire, Jean-Marie
    Villeta, Maria
    DISCRETE MATHEMATICS, 2011, 311 (04) : 211 - 219
  • [26] Hyperbolicity and parameters of graphs
    Michel, Junior
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    ARS COMBINATORIA, 2011, 100 : 43 - 63
  • [27] Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces
    Touris, Eva
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 865 - 881
  • [28] Twists and Gromov Hyperbolicity of Riemann Surfaces
    Matsuzaki, Katsuhiko
    Rodriguez, Jose M.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2011, 27 (01) : 29 - 44
  • [29] On the Gromov Hyperbolicity of Convex Domains in Cn
    Gaussier, Herve
    Seshadri, Harish
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2018, 18 (04) : 617 - 641
  • [30] Gromov hyperbolicity through decomposition of metric spaces
    Rodríguez, JM
    Tourís, E
    ACTA MATHEMATICA HUNGARICA, 2004, 103 (1-2) : 107 - 138