Optimal Control of Nonclassical Diffusion Equations with Memory

被引:4
作者
Nguyen Duong Toan [1 ]
机构
[1] Haiphong Univ, Dept Math, 171 Phan Dang Luu, Kien An, Haiphong, Vietnam
关键词
Nonclassical diffusion equations; Optimal control; Necessary optimality conditions; Sufficient optimality conditions; PARABOLIC EQUATIONS; HEAT-CONDUCTION; ATTRACTORS; 2ND-ORDER; DYNAMICS; STABILITY;
D O I
10.1007/s10440-020-00310-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an optimal control problem of nonclassical diffusion equations with memory. We investigate the existence and uniqueness of optimal solutions. The necessary and sufficient optimality conditions are also studied. The main novelty of our result is to establish the optimality conditions for the parabolic optimal control problem with memory.
引用
收藏
页码:533 / 558
页数:26
相关论文
共 50 条
  • [41] Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity
    Xie, Yongqin
    Li, Qingsong
    Zhu, Kaixuan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 23 - 37
  • [42] DYNAMICAL BEHAVIOR OF NONCLASSICAL DIFFUSION EQUATIONS WITH THE DRIVING DELAY IN TIME-DEPENDENT SPACES
    Zhang, Shixuan
    Li, Qingsong
    Zhang, Jiangwei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, : 2568 - 2585
  • [43] Nonclassical diffusion equations on RN with singularly oscillating external forces
    Cung The Anh
    Nguyen Duong Toan
    APPLIED MATHEMATICS LETTERS, 2014, 38 : 20 - 26
  • [44] Continuous Dependence on a Parameter of Exponential Attractors for Nonclassical Diffusion Equations
    Wang, Gang
    Hu, Chaozhu
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2020, 2020
  • [45] ON INITIAL AND TERMINAL VALUE PROBLEMS FOR FRACTIONAL NONCLASSICAL DIFFUSION EQUATIONS
    Nguyen Huy Tuan
    Caraballo, Tomas
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (01) : 143 - 161
  • [46] Attractors and asymptotic regularity for nonclassical diffusion equations in locally uniform spaces with critical exponent
    Zhang, Fang-hong
    Wang, Li-hong
    Gao, Jin-ling
    ASYMPTOTIC ANALYSIS, 2016, 99 (3-4) : 241 - 262
  • [47] Strong global attractors for nonclassical diffusion equation with fading memory
    Zhang, Yubao
    Wang, Xuan
    Gao, Chenghua
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [48] DYNAMICAL BEHAVIOR OF NONCLASSICAL DIFFUSION EQUATION WITH PERTURBED PARAMETER AND MEMORY
    Xie, Zhe
    Li, Chengliang
    Xu, Jun
    Xie, Yongqin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (01): : 44 - 65
  • [49] Optimal control of fractional reaction-diffusion equations with Poisson jumps
    N. Durga
    P. Muthukumar
    The Journal of Analysis, 2019, 27 : 605 - 621
  • [50] Optimal Control Approach to Nonlinear Diffusion Equations Driven by Wiener Noise
    Viorel Barbu
    Journal of Optimization Theory and Applications, 2012, 153 : 1 - 26