Photocurrent spectra of heavily doped terahertz quantum well photodetectors

被引:12
作者
Guo, X. G. [1 ,2 ]
Zhang, R. [1 ,2 ]
Liu, H. C. [2 ]
SpringThorpe, A. J. [2 ]
Cao, J. C. [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
[2] Natl Res Council Canada, Inst Microstruct Sci, Ottawa, ON K1A 0R6, Canada
基金
中国国家自然科学基金;
关键词
INFRARED PHOTODETECTORS; HETEROSTRUCTURES; RELAXATION; EXCHANGE;
D O I
10.1063/1.3458829
中图分类号
O59 [应用物理学];
学科分类号
摘要
Terahertz (THz) quantum well photodetectors (QWPs) are an important candidate for THz imaging and THz free space communication. Low absorption efficiency of THz QWPs is the main factor limiting the performance of this kind of THz detectors. To increase the absorption efficiency, three heavily doped THz QWPs were fabricated. The band structure calculations show that the second subband falls into the quantum well with increasing Si doping concentration, which decreases the escape probability of the photon-excited electrons in the second subband. This effect is responsible for the blueshift and broadening of the photocurrent peak with increasing Si doping. (C) 2010 American Institute of Physics. [doi:10.1063/1.3458829]
引用
收藏
页数:3
相关论文
共 15 条
[1]   Microscopic theory of vertical-transport phenomena in semiconductor heterostructures: Interplay between two- and three-dimensional hot-carrier relaxation [J].
Barbieri, S ;
Beltram, F ;
Rossi, F .
PHYSICAL REVIEW B, 1999, 60 (03) :1953-1963
[2]   Monte Carlo simulation of intersubband relaxation in wide, uniformly doped GaAs/AlxGa1-xAs quantum wells [J].
Dur, M ;
Goodnick, SM ;
Lugli, P .
PHYSICAL REVIEW B, 1996, 54 (24) :17794-17804
[3]   Photocurrents of 14 μm quantum-well infrared photodetectors [J].
Fu, Y ;
Willander, M ;
Jiang, J ;
Li, N ;
Lu, W ;
Liu, HC .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (12) :9432-9436
[4]   Terahertz range quantum well infrared photodetector [J].
Graf, M ;
Scalari, G ;
Hofstetter, D ;
Faist, J ;
Beere, H ;
Linfield, E ;
Ritchie, D ;
Davies, G .
APPLIED PHYSICS LETTERS, 2004, 84 (04) :475-477
[5]   Terahertz quantum well infrared detectors [J].
Graf, Marcel ;
Dupont, Emmanuel ;
Luo, Hui ;
Haffouz, Soufien ;
Wasilewski, Zbig R. ;
Thorpe, Anthony J. Spring ;
Ban, Dayan ;
Liu, H. C. .
INFRARED PHYSICS & TECHNOLOGY, 2009, 52 (06) :289-293
[6]   EXCHANGE AND CORRELATION IN ATOMS, MOLECULES, AND SOLIDS BY SPIN-DENSITY FUNCTIONAL FORMALISM [J].
GUNNARSSON, O ;
LUNDQVIST, BI .
PHYSICAL REVIEW B, 1976, 13 (10) :4274-4298
[7]   Many-body effects on terahertz quantum well detectors [J].
Guo, X. G. ;
Tan, Z. Y. ;
Cao, J. C. ;
Liu, H. C. .
APPLIED PHYSICS LETTERS, 2009, 94 (20)
[8]  
Jacoboni C., 1989, The Monte Carlo Method for Semiconductor Device Simulation. Computational Microelectronics
[9]   PHOTOEXCITED ESCAPE PROBABILITY, OPTICAL GAIN, AND NOISE IN QUANTUM-WELL INFRARED PHOTODETECTORS [J].
LEVINE, BF ;
ZUSSMAN, A ;
GUNAPALA, SD ;
ASOM, MT ;
KUO, JM ;
HOBSON, WS .
JOURNAL OF APPLIED PHYSICS, 1992, 72 (09) :4429-4443
[10]   Terahertz quantum-well photodetector [J].
Liu, HC ;
Song, CY ;
SpringThorpe, AJ ;
Cao, JC .
APPLIED PHYSICS LETTERS, 2004, 84 (20) :4068-4070