CADBURE: A generic tool to evaluate the performance of spliced aligners on RNA-Seq data

被引:7
|
作者
Kumar, Praveen Kumar Raj [1 ]
Hoang, Thanh V. [1 ]
Robinson, Michael L. [1 ]
Tsonis, Panagiotis A. [2 ,3 ]
Liang, Chun [1 ,4 ]
机构
[1] Miami Univ, Dept Biol, Oxford, OH 45056 USA
[2] Univ Dayton, Dept Biol, Dayton, OH 45469 USA
[3] Univ Dayton, Ctr Tissue Regenerat & Engn, Dayton, OH 45469 USA
[4] Miami Univ, Dept Comp Sci & Software Engn, Oxford, OH 45056 USA
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
TRANSCRIPTOME ANALYSIS; EXPRESSION; ALIGNMENT; READS;
D O I
10.1038/srep13443
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The fundamental task in RNA-Seq-based transcriptome analysis is alignment of millions of short reads to the reference genome or transcriptome. Choosing the right tool for the dataset in hand from many existent RNA-Seq alignment packages remains a critical challenge for downstream analysis. To facilitate this choice, we designed a novel tool for comparing alignment results of user data based on the relative reliability of uniquely aligned reads (CADBURE). CADBURE can easily evaluate different aligners, or different parameter sets using the same aligner, and selects the best alignment result for any RNA-Seq dataset. Strengths of CADBURE include the ability to compare alignment results without the need for synthetic data such as simulated genomes, alignment regeneration and randomly subsampled datasets. The benefit of a CADBURE selected alignment result was supported by differentially expressed gene (DEG) analysis. We demonstrated that the use of CADBURE to select the best alignment from a number of different alignment results could change the number of DEGs by as much as 10%. In particular, the CADBURE selected alignment result favors fewer false positives in the DEG analysis. We also verified differential expression of eighteen genes with RT-qPCR validation experiments. CADBURE is an open source tool (http://cadbure.sourceforge.net/).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] CADBURE: A generic tool to evaluate the performance of spliced aligners on RNA-Seq data
    Praveen Kumar Raj Kumar
    Thanh V. Hoang
    Michael L. Robinson
    Panagiotis A. Tsonis
    Chun Liang
    Scientific Reports, 5
  • [2] Systematic evaluation of spliced alignment programs for RNA-seq data
    Pär G Engström
    Tamara Steijger
    Botond Sipos
    Gregory R Grant
    André Kahles
    Gunnar Rätsch
    Nick Goldman
    Tim J Hubbard
    Jennifer Harrow
    Roderic Guigó
    Paul Bertone
    Nature Methods, 2013, 10 : 1185 - 1191
  • [3] Ambiguous genes due to aligners and their impact on RNA-seq data analysis
    Szabelska-Beresewicz, Alicja
    Zyprych-Walczak, Joanna
    Siatkowski, Idzi
    Okoniewski, Michal
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Systematic evaluation of spliced alignment programs for RNA-seq data
    Engstrom, Par G.
    Steijger, Tamara
    Sipos, Botond
    Grant, Gregory R.
    Kahles, Andre
    Raetsch, Gunnar
    Goldman, Nick
    Hubbard, Tim J.
    Harrow, Jennifer
    Guigo, Roderic
    Bertone, Paul
    NATURE METHODS, 2013, 10 (12) : 1185 - +
  • [5] Ambiguous genes due to aligners and their impact on RNA-seq data analysis
    Alicja Szabelska-Beresewicz
    Joanna Zyprych-Walczak
    Idzi Siatkowski
    Michał Okoniewski
    Scientific Reports, 13
  • [6] FBB: a fast Bayesian-bound tool to calibrate RNA-seq aligners
    Rodriguez-Lujan, Irene
    Hasty, Jeff
    Huerta, Ramon
    BIOINFORMATICS, 2017, 33 (02) : 210 - 218
  • [7] RNAseqViewer: visualization tool for RNA-Seq data
    Roge, Xavier
    Zhang, Xuegong
    BIOINFORMATICS, 2014, 30 (06) : 891 - 892
  • [8] Supersplat-spliced RNA-seq alignment
    Bryant, Douglas W., Jr.
    Shen, Rongkun
    Priest, Henry D.
    Wong, Weng-Keen
    Mockler, Todd C.
    BIOINFORMATICS, 2010, 26 (12) : 1500 - 1505
  • [9] sRNAflow: A Tool for the Analysis of Small RNA-Seq Data
    Zayakin, Pawel
    NON-CODING RNA, 2024, 10 (01)
  • [10] Detection of generic differential RNA processing events from RNA-seq data
    Tran, Van Du T.
    Souiai, Oussema
    Romero-Barrios, Natali
    Crespi, Martin
    Gautheret, Daniel
    RNA BIOLOGY, 2016, 13 (01) : 59 - 67