DXAGE: A New Method for Age at Death Estimation Based on Femoral Bone Mineral Density and Artificial Neural Networks

被引:37
|
作者
Navega, David [1 ,2 ]
Coelho, Joao d'Oliveira [1 ,2 ]
Cunha, Eugenia [1 ,2 ]
Curate, Francisco [1 ,3 ,4 ]
机构
[1] Univ Coimbra, Lab Forens Anthropol, Dept Life Sci, P-3000456 Coimbra, Portugal
[2] Univ Coimbra, Ctr Funct Ecol, Dept Life Sci, P-3000456 Coimbra, Portugal
[3] Univ Coimbra, Res Ctr Anthropol & Hlth, Dept Life Sci, P-3000456 Coimbra, Portugal
[4] Univ Algarve, Interdisciplinary Ctr Archaeol & Evolut Human Beh, Fac Cicncias Humanas & Sociais, Campus Gambelas, P-8005139 Faro, Portugal
关键词
forensic science; biological profile; BMD; DXA; machine learning; forensic anthropology; PROXIMAL FEMUR; SKELETAL AGE; AT-DEATH; FORENSIC ANTHROPOLOGY; SEX ESTIMATION; WOMEN; OSTEOPOROSIS; MEN; PREVALENCE; REGRESSION;
D O I
10.1111/1556-4029.13582
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
Age at death estimation in adult skeletons is hampered, among others, by the unremarkable correlation of bone estimators with chronological age, implementation of inappropriate statistical techniques, observer error, and skeletal incompleteness or destruction. Therefore, it is beneficial to consider alternative methods to assess age at death in adult skeletons. The decrease in bone mineral density with age was explored to generate a method to assess age at death in human remains. A connectionist computational approach, artificial neural networks, was employed to model femur densitometry data gathered in 100 female individuals from the Coimbra Identified Skeletal Collection. Bone mineral density declines consistently with age and the method performs appropriately, with mean absolute differences between known and predicted age ranging from 9.19 to 13.49 years. The proposed methodDXAGEwas implemented online to streamline age estimation. This preliminary study highlights the value of densitometry to assess age at death in human remains.
引用
收藏
页码:497 / 503
页数:7
相关论文
共 50 条
  • [21] Estimation of glandular dose in mammography based on artificial neural networks
    Trevisan Massera, Rodrigo
    Tomal, Alessandra
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (09)
  • [22] Optimal induction machine parameter estimation method with artificial neural networks
    Ipek, Sema Nur
    Taskiran, Murat
    Bekiroglu, Nur
    Aycicek, Engin
    ELECTRICAL ENGINEERING, 2024, 106 (02) : 1959 - 1975
  • [23] The Evaluation of Bone Mineral Density based on Age and Anthropometric Parameters in Southeast Chinese Adults: A Cross-Sectional Study
    Xuan, Rongrong
    Song, Yang
    Baker, Julien S.
    Gu, Yaodong
    MEDICAL SCIENCE MONITOR, 2020, 26 : e923603
  • [24] Optimal induction machine parameter estimation method with artificial neural networks
    Sema Nur Ipek
    Murat Taskiran
    Nur Bekiroglu
    Engin Aycicek
    Electrical Engineering, 2024, 106 : 1959 - 1975
  • [25] Automated detection of the contrast phase in MDCT by an artificial neural network improves the accuracy of opportunistic bone mineral density measurements
    Ruehling, Sebastian
    Navarro, Fernando
    Sekuboyina, Anjany
    El Husseini, Malek
    Baum, Thomas
    Menze, Bjoern
    Braren, Rickmer
    Zimmer, Claus
    Kirschke, Jan S.
    EUROPEAN RADIOLOGY, 2022, 32 (03) : 1465 - 1474
  • [26] Automated detection of the contrast phase in MDCT by an artificial neural network improves the accuracy of opportunistic bone mineral density measurements
    Sebastian Rühling
    Fernando Navarro
    Anjany Sekuboyina
    Malek El Husseini
    Thomas Baum
    Bjoern Menze
    Rickmer Braren
    Claus Zimmer
    Jan S. Kirschke
    European Radiology, 2022, 32 : 1465 - 1474
  • [27] FAMILIALITY AND PARTITIONING THE VARIABILITY OF FEMORAL BONE-MINERAL DENSITY IN WOMEN OF CHILD-BEARING AGE
    SOWERS, MFR
    BOEHNKE, M
    JANNAUSCH, ML
    CRUTCHFIELD, M
    CORTON, G
    BURNS, TL
    CALCIFIED TISSUE INTERNATIONAL, 1992, 50 (02) : 110 - 114
  • [28] Application of neural networks to the study of the influence of diet and lifestyle on the value of bone mineral density in post-menopausal women
    de Cos Juez, F. J.
    Suarez-Suarez, M. A.
    Sanchez Lasheras, F.
    Murcia-Mazon, A.
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (7-8) : 1665 - 1670
  • [29] Rib fractures in the Coimbra Identified Skeletal Collection: potential associations with biological sex, age-at-death and bone mineral density
    Curate, Francisco
    Cunha, Eugenia
    ANTROPOLOGIA PORTUGUESA, 2022, 39 : 7 - 26
  • [30] Artificial neural network analysis: a novel application for predicting site-specific bone mineral density
    E. I. Mohamed
    C. Maiolo
    R. Linder
    S. J. Pöppl
    A. De Lorenzo
    Acta Diabetologica, 2003, 40 : s19 - s22