Hybrid bounds for twisted L-functions

被引:72
作者
Blomer, Valentin [1 ]
Harcos, Gergely [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2008年 / 621卷
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1515/CRELLE.2008.058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to derive bounds on the critical line Rs 1/2 for L- functions attached to twists f circle times chi of a primitive cusp form f of level N and a primitive character modulo q that break convexity simultaneously in the s and q aspects. If f has trivial nebentypus, it is shown that L(f circle times chi, s) << (N vertical bar s vertical bar q)(epsilon) N-4/5(vertical bar s vertical bar q)(1/2-1/40), where the implied constant depends only on epsilon > 0 and the archimedean parameter of f. To this end, two independent methods are employed to show L(f circle times chi, s) << (N vertical bar s vertical bar q)(epsilon) N-1/2 vertical bar S vertical bar(1/2)q(3/8) and L(g,s) << D-2/3 vertical bar S vertical bar(5/12) for any primitive cusp form g of level D and arbitrary nebentypus (not necessarily a twist f circle times chi of level D vertical bar Nq(2)).
引用
收藏
页码:53 / 79
页数:27
相关论文
共 31 条
  • [1] [Anonymous], 2002, GRAD STUD MATH
  • [2] A burgess-like subconvex bound for twisted L-functions
    Blomer, V.
    Harcos, G.
    Michel, P.
    Mao, Z.
    [J]. FORUM MATHEMATICUM, 2007, 19 (01) : 61 - 105
  • [3] Rankin-Selberg L-functions on the critical line
    Blomer, V
    [J]. MANUSCRIPTA MATHEMATICA, 2005, 117 (02) : 111 - 133
  • [4] BLOMER V, DUKE MATH J IN PRESS
  • [5] BLOMER V, CRM LECT NO IN PRESS
  • [6] Bounds for modular L-functions in the level aspect
    Blomer, Valentin
    Harcos, Gergely
    Michel, Philippe
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (05): : 697 - 740
  • [7] BRUDERN J, 1995, EINFUHRUNG ANAL ZAHL
  • [8] Burgess D.A., 1963, P LOND MATH SOC, V3, P524, DOI [DOI 10.1112/PLMS/S3-13.1.524, 10.1112/plms/s3-13.1.524]
  • [9] Bykovskii V.A., 1998, J MATH SCI-U TOKYO, V89, P915, DOI DOI 10.1007/BF02358528
  • [10] The subconvexity problem for Artin L-functions
    Duke, W
    Friedlander, JB
    Iwaniec, H
    [J]. INVENTIONES MATHEMATICAE, 2002, 149 (03) : 489 - 577