Predicting the cooling heat transfer coefficient of supercritical CO2 with a small amount of entrained lubricating oil by using the neural network method

被引:12
作者
Dang, Chaobin [1 ]
Hihara, Eiji [1 ]
机构
[1] Univ Tokyo, Dept Human & Engn Environm Studies, Kashiwa, Chiba 2778563, Japan
来源
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID | 2012年 / 35卷 / 04期
关键词
Heat transfer coefficient; Carbon dioxide; Modeling; Neural network; Oil; Polyalkene glycol; CARBON-DIOXIDE; TUBE;
D O I
10.1016/j.ijrefrig.2012.01.022
中图分类号
O414.1 [热力学];
学科分类号
摘要
A neural network method is presented to construct a semi-empirical prediction model of the heat transfer performance of supercritical carbon dioxide with a small amount of entrained PAG-type lubricating oil. The proposed approach involves a feedforward three-layer neural network, with the tube diameter, Prandtl number, Reynolds number, heat flux, thermal conductivity, and oil concentration as the input parameters, and the heat transfer coefficient as the output parameter. The experimental data used to construct the neural network correspond to a large number of experimental conditions, with the following variations: tube diameter from 1 to 6 mm, oil concentration from 0% to 5%, pressure from 8 to 10 MPa, mass flux from 200 to 1200 kg/m(2)s, and heat flux from 12 to 24 kW/m(2). The proposed model is found to agree well with the experimental results, with a deviation of +/- 20% for 87.3% of the valid data. (C) 2012 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:1130 / 1138
页数:9
相关论文
共 13 条
[1]   Predictions of heat transfer coefficients of supercritical carbon dioxide using the overlapped type of local neural network [J].
Chen, JH ;
Wang, KP ;
Liang, MT .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (12) :2483-2492
[2]   In-tube cooling heat transfer of supercritical carbon dioxide. Part 1. Experimental measurement [J].
Dang, C ;
Hihara, E .
INTERNATIONAL JOURNAL OF REFRIGERATION, 2004, 27 (07) :736-747
[3]   In-tube cooling heat transfer of supercritical carbon dioxide. Part 2. Comparison of numerical calculation with different turbulence models [J].
Dang, CB ;
Hihara, E .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2004, 27 (07) :748-760
[4]   Effect of lubricating oil on cooling heat transfer of supercritical carbon dioxide [J].
Dang, Chaobin ;
Lino, Koji ;
Fukuoka, Ken ;
Hihara, Eiji .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2007, 30 (04) :724-731
[5]   Study on two-phase flow pattern of supercritical carbon dioxide with entrained PAG-type lubricating oil in a gas cooler [J].
Dang, Chaobin ;
Iino, Koji ;
Hihara, Eiji .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2008, 31 (07) :1265-1272
[6]   Evaluating convective heat transfer coefficients using neural networks [J].
Jambunathan, K ;
Hartle, SL ;
AshforthFrost, S ;
Fontama, VN .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1996, 39 (11) :2329-2332
[7]   THE USE OF NATURAL REFRIGERANTS - A COMPLETE SOLUTION TO THE CFC/HCFC PREDICAMENT [J].
LORENTZEN, G .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 1995, 18 (03) :190-197
[8]   A NEW, EFFICIENT AND ENVIRONMENTALLY BENIGN SYSTEM FOR CAR AIR-CONDITIONING [J].
LORENTZEN, G ;
PETTERSEN, J .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 1993, 16 (01) :4-12
[9]   REVIVAL OF CARBON-DIOXIDE AS A REFRIGERANT [J].
LORENTZEN, G .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 1994, 17 (05) :292-301
[10]   Convective cooling of supercritical carbon dioxide inside tubes: heat transfer analysis through neural networks [J].
Scalabrin, G ;
Piazza, L ;
Condosta, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (23) :4413-4425