OpenCL Based Parallel Algorithm for RBF-PUM Interpolation

被引:29
作者
Cavoretto, Roberto [1 ]
Schneider, Teseo [2 ]
Zulian, Patrick [2 ]
机构
[1] Univ Torino, Dept Math G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Univ Svizzera Italiana, Fac Informat, Via Giuseppe Buffi 13, CH-6904 Lugano, Switzerland
基金
瑞士国家科学基金会;
关键词
Mesh-free approximation; Partition of unity methods; Radial basis functions; Scattered data interpolation; Parallel algorithms; Opencl; SCATTERED DATA; PARTITION; COMPUTATION;
D O I
10.1007/s10915-017-0431-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a parallel algorithm for multivariate Radial Basis Function Partition of Unity Method (RBF-PUM) interpolation. The concurrent nature of the RBF-PUM enables designing parallel algorithms for dealing with a large number of scattered data-points in high space dimensions. To efficiently exploit this concurrency, our algorithm makes use of shared-memory parallel processors through the OpenCL standard. This efficiency is achieved by a parallel space partitioning strategy with linear computational time complexity with respect to the input and evaluation points. The speed of our approach allows for computationally more intensive construction of the interpolant. In fact, the RBF-PUM can be coupled with a cross-validation technique that searches for optimal values of the shape parameters associated with each local RBF interpolant, thus reducing the global interpolation error. The numerical experiments support our claims by illustrating the interpolation errors and the running times of our algorithm.
引用
收藏
页码:267 / 289
页数:23
相关论文
共 46 条
[11]   Efficient computation of partition of unity interpolants through a block-based searching technique [J].
Cavoretto, R. ;
De Rossi, A. ;
Perracchione, E. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (12) :2568-2584
[12]   Robust Approximation Algorithms for the Detection of Attraction Basins in Dynamical Systems [J].
Cavoretto, Roberto ;
De Rossi, Alessandra ;
Perracchione, Emma ;
Venturino, Ezio .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) :395-415
[13]   A TRIVARIATE INTERPOLATION ALGORITHM USING A CUBE-PARTITION SEARCHING PROCEDURE [J].
Cavoretto, Roberto ;
De Rossi, Alessandra .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04) :A1891-A1908
[15]   An introduction to the Hilbert-Schmidt SVD using iterated Brownian bridge kernels [J].
Cavoretto, Roberto ;
Fasshauer, Gregory E. ;
McCourt, Michael .
NUMERICAL ALGORITHMS, 2015, 68 (02) :393-422
[16]   Fast computation of orthonormal basis for RBF spaces through Krylov space methods [J].
De Marchi, Stefano ;
Santin, Gabriele .
BIT NUMERICAL MATHEMATICS, 2015, 55 (04) :949-966
[17]   Complete Hermite-Birkhoff interpolation on scattered data by combined Shepard operators [J].
Dell'Accio, F. ;
Di Tommaso, F. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 300 :192-206
[18]   A RESCALED LOCALIZED RADIAL BASIS FUNCTION INTERPOLATION ON NON-CARTESIAN AND NONCONFORMING GRIDS [J].
Deparis, Simone ;
Forti, Davide ;
Quarteroni, Alfio .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06) :A2745-A2762
[19]  
Ericson C., 2004, MORGAN KAUGMAN SERIE
[20]  
Fasshauer G.E., 2007, Meshfree Approximations Methods with Matlab