Conditionally autoregressive models improve occupancy analyses of autocorrelated data: An example with environmental DNA

被引:20
作者
Chen, Wentao [1 ]
Ficetola, Gentile Francesco [1 ,2 ]
机构
[1] Univ Grenoble Alpes, CNRS, Lab Ecol Alpine LECA, Grenoble, France
[2] Univ Milan, Dept Environm Sci & Policy, Milan, Italy
基金
欧盟地平线“2020”;
关键词
conditionally autoregressive model; sedimentary DNA; spatial autocorrelation; species occupancy-detection model; temporal autocorrelation; true skill statistics; SPATIAL AUTOCORRELATION; SPECIES OCCURRENCE; SEDIMENTARY DNA; ACCURACY; ACCOUNT; ERRORS; SHIFTS; CAR;
D O I
10.1111/1755-0998.12949
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Site occupancy-detection models (SODMs) are statistical models widely used for biodiversity surveys where imperfect detection of species occurs. For instance, SODMs are increasingly used to analyse environmental DNA (eDNA) data, taking into account the occurrence of both false-positive and false-negative errors. However, species occurrence data are often characterized by spatial and temporal autocorrelation, which might challenge the use of standard SODMs. Here we reviewed the literature of eDNA biodiversity surveys and found that most of studies do not take into account spatial or temporal autocorrelation. We then demonstrated how the analysis of data with spatial or temporal autocorrelation can be improved by using a conditionally autoregressive SODM, and show its application to environmental DNA data. We tested the autoregressive model on both simulated and real data sets, including chronosequences with different degrees of autocorrelation, and a spatial data set on a virtual landscape. Analyses of simulated data showed that autoregressive SODMs perform better than traditional SODMs in the estimation of key parameters such as true-/false-positive rates and show a better discrimination capacity (e.g., higher true skill statistics). The usefulness of autoregressive SODMs was particularly high in data sets with strong autocorrelation. When applied to real eDNA data sets (eDNA from lake sediment cores and freshwater), autoregressive SODM provided more precise estimation of true-/false-positive rates, resulting in more reasonable inference of occupancy states. Our results suggest that analyses of occurrence data, such as many applications of eDNA, can be largely improved by applying conditionally autoregressive specifications to SODMs.
引用
收藏
页码:163 / 175
页数:13
相关论文
共 57 条
[1]   A Bayesian hierarchical occupancy model for track surveys conducted in a series of linear, spatially correlated, sites [J].
Aing, Chrisna ;
Halls, Sarah ;
Oken, Kiva ;
Dobrow, Robert ;
Fieberg, John .
JOURNAL OF APPLIED ECOLOGY, 2011, 48 (06) :1508-1517
[2]   Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS) [J].
Allouche, Omri ;
Tsoar, Asaf ;
Kadmon, Ronen .
JOURNAL OF APPLIED ECOLOGY, 2006, 43 (06) :1223-1232
[3]  
[Anonymous], 2017, RSTAN R INTERFACE ST
[4]   Regression analysis of spatial data [J].
Beale, Colin M. ;
Lennon, Jack J. ;
Yearsley, Jon M. ;
Brewer, Mark J. ;
Elston, David A. .
ECOLOGY LETTERS, 2010, 13 (02) :246-264
[5]   Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression [J].
Bini, L. Mauricio ;
Diniz-Filho, J. Alexandre F. ;
Rangel, Thiago F. L. V. B. ;
Akre, Thomas S. B. ;
Albaladejo, Rafael G. ;
Albuquerque, Fabio S. ;
Aparicio, Abelardo ;
Araujo, Miguel B. ;
Baselga, Andres ;
Beck, Jan ;
Isabel Bellocq, M. ;
Boehning-Gaese, Katrin ;
Borges, Paulo A. V. ;
Castro-Parga, Isabel ;
Chey, Vun Khen ;
Chown, Steven L. ;
de Marco, Paulo, Jr. ;
Dobkin, David S. ;
Ferrer-Castan, Dolores ;
Field, Richard ;
Filloy, Julieta ;
Fleishman, Erica ;
Gomez, Jose F. ;
Hortal, Joaquin ;
Iverson, John B. ;
Kerr, Jeremy T. ;
Kissling, W. Daniel ;
Kitching, Ian J. ;
Leon-Cortes, Jorge L. ;
Lobo, Jorge M. ;
Montoya, Daniel ;
Morales-Castilla, Ignacio ;
Moreno, Juan C. ;
Oberdorff, Thierry ;
Olalla-Tarraga, Miguel A. ;
Pausas, Juli G. ;
Qian, Hong ;
Rahbek, Carsten ;
Rodriguez, Miguel A. ;
Rueda, Marta ;
Ruggiero, Adriana ;
Sackmann, Paula ;
Sanders, Nathan J. ;
Terribile, Levi Carina ;
Vetaas, Ole R. ;
Hawkins, Bradford A. .
ECOGRAPHY, 2009, 32 (02) :193-204
[6]  
Bivand R, 2015, J STAT SOFTW, V63, P1
[7]   Computing the Jacobian in Gaussian Spatial Autoregressive Models: An Illustrated Comparison of Available Methods [J].
Bivand, Roger ;
Hauke, Jan ;
Kossowski, Tomasz .
GEOGRAPHICAL ANALYSIS, 2013, 45 (02) :150-179
[8]  
Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6
[9]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159
[10]   Quantitative approaches in climate change ecology [J].
Brown, Christopher J. ;
Schoeman, David S. ;
Sydeman, William J. ;
Brander, Keith ;
Buckley, Lauren B. ;
Burrows, Michael ;
Duarte, Carlos M. ;
Moore, Pippa J. ;
Pandolfi, John M. ;
Poloczanska, Elvira ;
Venables, William ;
Richardson, Anthony J. .
GLOBAL CHANGE BIOLOGY, 2011, 17 (12) :3697-3713