Predicting breast tumor proliferation from whole-slide images: The TUPAC16 challenge

被引:181
作者
Veta, Mitko [1 ]
Heng, Yujing J. [2 ]
Stathonikos, Nikolas [3 ]
Bejnordi, Babak Ehteshami [4 ]
Beca, Francisco [5 ]
Wollmann, Thomas [6 ,7 ]
Rohr, Karl [6 ,7 ]
Shah, Manan A. [8 ]
Wang, Dayong [2 ]
Rousson, Mikael [9 ]
Hedlund, Martin [9 ]
Tellez, David [5 ]
Ciompi, Francesco [5 ]
Zerhouni, Erwan [10 ]
Lanyi, David [10 ]
Viana, Matheus [11 ]
Kovalev, Vassili [12 ]
Liauchuk, Vitali [12 ]
Phoulady, Hady Ahmady [13 ]
Qaiser, Talha [14 ]
Graham, Simon [14 ]
Rajpoot, Nasir [14 ]
Sjoblom, Erik [15 ]
Molin, Jesper [15 ]
Paeng, Kyunghyun [16 ]
Hwang, Sangheum [16 ]
Park, Sunggyun [16 ]
Jia, Zhipeng [17 ]
Chang, Eric I-Chao [18 ]
Xu, Yan [18 ,19 ]
Beck, Andrew H. [2 ]
van Diest, Paul J. [3 ]
Pluim, Josien P. W. [1 ]
机构
[1] Eindhoven Univ Technol, Med Image Anal Grp, Eindhoven, Netherlands
[2] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Pathol, Boston, MA 02115 USA
[3] Univ Med Ctr Utrecht, Dept Pathol, Utrecht, Netherlands
[4] Radboud Univ Nijmegen, Diagnost Image Anal Grp, Med Ctr, Nijmegen, Netherlands
[5] Stanford Univ, Sch Med, Dept Pathol, Stanford, CA 94305 USA
[6] Heidelberg Univ, Biomed Comp Vis Grp, BIOQUANT, IPMB, Heidelberg, Germany
[7] DKFZ, Heidelberg, Germany
[8] Harker Sch, San Jose, CA USA
[9] ContextVision AB, Linkoping, Sweden
[10] IBM Res Zurich, Fdn Cognit Comp, Ruschlikon, Switzerland
[11] IBM Res Brazil, Visual Analyt & Insights, Sao Paulo, Brazil
[12] United Inst Informat, Biomed Image Anal Dept, Minsk, BELARUS
[13] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL USA
[14] Univ Warwick, Dept Comp Sci, Warwick, England
[15] Sectra, Res, Linkoping, Sweden
[16] Lunit Inc, Seoul, South Korea
[17] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing, Peoples R China
[18] Microsoft Res, Beijing, Peoples R China
[19] Beihang Univ, Biol & Med Engn, Beijing, Peoples R China
关键词
Breast cancer; Cancer prognostication; Tumor proliferation; Deep learning; MITOSIS DETECTION; CANCER;
D O I
10.1016/j.media.2019.02.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tumor proliferation is an important biomarker indicative of the prognosis of breast cancer patients. Assessment of tumor proliferation in a clinical setting is a highly subjective and labor-intensive task. Previous efforts to automate tumor proliferation assessment by image analysis only focused on mitosis detection in predefined tumor regions. However, in a real-world scenario, automatic mitosis detection should be performed in whole-slide images (WSIs) and an automatic method should be able to produce a tumor proliferation score given a WSI as input. To address this, we organized the TUmor Proliferation Assessment Challenge 2016 (TUPAC16) on prediction of tumor proliferation scores from WSIs. The challenge dataset consisted of 500 training and 321 testing breast cancer histopathology WSIs. In order to ensure fair and independent evaluation, only the ground truth for the training dataset was provided to the challenge participants. The first task of the challenge was to predict mitotic scores, i.e., to reproduce the manual method of assessing tumor proliferation by a pathologist. The second task was to predict the gene expression based PAM50 proliferation scores from the WSI. The best performing automatic method for the first task achieved a quadratic-weighted Cohen's kappa score of K = 0.567, 95% CI [0.464, 0.671] between the predicted scores and the ground truth. For the second task, the predictions of the top method had a Spearman's correlation coefficient of r= 0.617, 95% CI [0.581 0.651] with the ground truth. This was the first comparison study that investigated tumor proliferation assessment from WSIs. The achieved results are promising given the difficulty of the tasks and weakly-labeled nature of the ground truth. However, further research is needed to improve the practical utility of image analysis methods for this task. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 121
页数:11
相关论文
共 37 条
[1]   Evaluation of Mitotic Activity Index in Breast Cancer Using Whole Slide Digital Images [J].
Al-Janabi, Shaimaa ;
van Slooten, Henk-Jan ;
Visser, Mike ;
van der Ploeg, Tjeerd ;
van Diest, Paul J. ;
Jiwa, Mehdi .
PLOS ONE, 2013, 8 (12)
[2]   AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histology Images [J].
Albarqouni, Shadi ;
Baur, Christoph ;
Achilles, Felix ;
Belagiannis, Vasileios ;
Demirci, Stefanie ;
Navab, Nassir .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1313-1321
[3]  
[Anonymous], 2015, ICLR
[4]  
[Anonymous], 2016, ARXIV160507146CS
[5]  
[Anonymous], ARCH PATHOL LAB MED
[6]  
[Anonymous], ARXIV180602051CS
[7]   Stain Specific Standardization of Whole-Slide Histopathological Images [J].
Bejnordi, Babak Ehteshami ;
Litjens, Geert ;
Timofeeva, Nadya ;
Otte-Holler, Irene ;
Homeyer, Andre ;
Karssemeijer, Nico ;
van der Laak, Jeroen A. W. M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (02) :404-415
[8]   Ki67 Index, HER2 Status, and Prognosis of Patients With Luminal B Breast Cancer [J].
Cheang, Maggie C. U. ;
Chia, Stephen K. ;
Voduc, David ;
Gao, Dongxia ;
Leung, Samuel ;
Snider, Jacqueline ;
Watson, Mark ;
Davies, Sherri ;
Bernard, Philip S. ;
Parker, Joel S. ;
Perou, Charles M. ;
Ellis, Matthew J. ;
Nielsen, Torsten O. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2009, 101 (10) :736-750
[9]  
Chen H, 2016, AAAI CONF ARTIF INTE, P1160
[10]   AUTOMATED MITOSIS DETECTION WITH DEEP REGRESSION NETWORKS [J].
Chen, Hao ;
Wang, Xi ;
Heng, Pheng Ann .
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, :1204-1207