LOGARITHMIC ASYMPTOTICS OF THE NUMBER OF CENTRAL VERTICES OF ALMOST ALL n-VERTEX GRAPHS OF DIAMETER k

被引:1
|
作者
Fedoryaeva, T., I [1 ]
机构
[1] Sobolev Inst Math, Pr Koptyuga 4, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2022年 / 19卷 / 02期
关键词
graph; diameter; radius; central vertices; number of central vertices; central ratio; center; spectrum of center; typical graphs; almost all graphs;
D O I
10.33048/semi.2022.19.062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The asymptotic behavior of the number of central vertices and F. Buckley's central ratio R-c(G)= vertical bar C(G)vertical bar/vertical bar V(G)vertical bar for almost all n vertex graphs G of fixed diameter k is investigated. The logarithmic asymptotics of the number of central vertices for almost all such n-vertex graphs is established: 0 or log(2) n (1 or log(2) n), respectively, for arising here subclasses of graphs of the even (odd) diameter. It is proved that for almost all n-vertex graphs of diameter k, R-c(G) = 1 for k = 1, 2, and R-c(G) = 1 - 2/n for graphs of diameter k = 3, while for k >= 4 the value of the central ratio R-c(G) is bounded by the interval (Delta/6 + r(1) (n), 1 - Delta/6 - r(1) (n)) except no more than one value (two values) outside the interval for even diameter k (for odd diameter k) depending on k. Here Delta is an element of (0, 1) is arbitrary predetermined constant and r(1) (n), r(2) (n) are positive infinitesimal functions.
引用
收藏
页码:747 / 761
页数:15
相关论文
共 4 条