Real-Time Fusion Network for RGB-D Semantic Segmentation Incorporating Unexpected Obstacle Detection for Road-Driving Images

被引:110
作者
Sun, Lei [1 ]
Yang, Kailun [2 ]
Hu, Xinxin [1 ]
Hu, Weijian [1 ]
Wang, Kaiwei [3 ]
机构
[1] Zhejiang Univ, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[2] Karlsruhe Inst Technol, Inst Anthropomat & Robot, D-76131 Karlsruhe, Germany
[3] Zhejiang Univ, Natl Opt Instrumentat Engn Technol Res Ctr, Hangzhou 310027, Peoples R China
关键词
Semantic scene understanding; RGB-D fusion; obstacle detection; autonomous driving;
D O I
10.1109/LRA.2020.3007457
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Semantic segmentation has made striking progress due to the success of deep convolutional neural networks. Considering the demands of autonomous driving, real-time semantic segmentation has become a research hotspot these years. However, few real-time RGB-D fusion semantic segmentation studies are carried out despite readily accessible depth information nowadays. In this letter, we propose a real-time fusion semantic segmentation network termed RFNet that effectively exploits complementary cross-modal information. Building on an efficient network architecture, RFNet is capable of running swiftly, which satisfies autonomous vehicles applications. Multi-dataset training is lever-aged to incorporate unexpected small obstacle detection, enriching the recognizable classes required to face unforeseen hazards in the real world. A comprehensive set of experiments demonstrates the effectiveness of our framework. On Cityscapes, Our method outperforms previous state-of-the-art semantic segmenters, with excellent accuracy and 22 Hz inference speed at the full 2048 x 1024 resolution, outperforming most existing RGB-D networks.
引用
收藏
页码:5558 / 5565
页数:8
相关论文
共 40 条
  • [1] Broggi A, 2011, IEEE INT C INT ROBOT, P1599, DOI 10.1109/IROS.2011.6048211
  • [2] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [3] Chen Liang-Chieh, 2018, ECCV, P801, DOI [DOI 10.1007/978-3-030-01234-249, DOI 10.1007/978-3-030-01234-2_49]
  • [4] The Cityscapes Dataset for Semantic Urban Scene Understanding
    Cordts, Marius
    Omran, Mohamed
    Ramos, Sebastian
    Rehfeld, Timo
    Enzweiler, Markus
    Benenson, Rodrigo
    Franke, Uwe
    Roth, Stefan
    Schiele, Bernt
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3213 - 3223
  • [5] Couprie C., 2013, P 1 INT C LEARN REPR
  • [6] Deng L., 2019, CORR
  • [7] Gupta K., 2011, Proceedings of 18th International Conference on High Performance Computing (HiPC), P1
  • [8] Learning Rich Features from RGB-D Images for Object Detection and Segmentation
    Gupta, Saurabh
    Girshick, Ross
    Arbelaez, Pablo
    Malik, Jitendra
    [J]. COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 : 345 - 360
  • [9] FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture
    Hazirbas, Caner
    Ma, Lingni
    Domokos, Csaba
    Cremers, Daniel
    [J]. COMPUTER VISION - ACCV 2016, PT I, 2017, 10111 : 213 - 228
  • [10] Identity Mappings in Deep Residual Networks
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 : 630 - 645