Technologies for measuring red blood cell deformability

被引:29
|
作者
Matthews, Kerryn [1 ,2 ]
Lamoureux, Erik S. [1 ,2 ]
Myrand-Lapierre, Marie-Eve [1 ]
Duffy, Simon P. [2 ,3 ]
Ma, Hongshen [1 ,2 ,4 ,5 ]
机构
[1] Univ British Columbia, Dept Mech Engn, 2054-6250 Appl Sci Lane, Vancouver, BC V6T 1Z4, Canada
[2] Univ British Columbia, Ctr Blood Res, Vancouver, BC, Canada
[3] British Columbia Inst Technol, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Urol Sci, Vancouver, BC, Canada
[5] Vancouver Gen Hosp, Vancouver Prostate Ctr, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会; 瑞典研究理事会; 加拿大健康研究院;
关键词
DIFFRACTION PHASE MICROSCOPY; ACUTE SPLENIC SEQUESTRATION; ERYTHROCYTE DEFORMABILITY; VISCOELASTIC PROPERTIES; MICROFLUIDIC ANALYSIS; MECHANICAL-PROPERTIES; OPTICAL TWEEZERS; MICROPIPETTE ASPIRATION; THALASSEMIA-INTERMEDIA; TRANSFUSION;
D O I
10.1039/d1lc01058a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Human red blood cells (RBCs) are approximately 8 mu m in diameter, but must repeatedly deform through capillaries as small as 2 mu m in order to deliver oxygen to all parts of the body. The loss of this capability is associated with the pathology of many diseases, and is therefore a potential biomarker for disease status and treatment efficacy. Measuring RBC deformability is a difficult problem because of the minute forces (similar to pN) that must be exerted on these cells, as well as the requirements for throughput and multiplexing. The development of technologies for measuring RBC deformability date back to the 1960s with the development of micropipette aspiration, ektacytometry, and the cell transit analyzer. In the past 10 years, significant progress has been made using microfluidics by leveraging the ability to precisely control fluid flow through microstructures at the size scale of individual RBCs. These technologies have now surpassed traditional methods in terms of sensitivity, throughput, consistency, and ease of use. As a result, these efforts are beginning to move beyond feasibility studies and into applications to enable biomedical discoveries. In this review, we provide an overview of both traditional and microfluidic techniques for measuring RBC deformability. We discuss the capabilities of each technique and compare their sensitivity, throughput, and robustness in measuring bulk and single-cell RBC deformability. Finally, we discuss how these tools could be used to measure changes in RBC deformability in the context of various applications including pathologies caused by malaria and hemoglobinopathies, as well as degradation during storage in blood bags prior to blood transfusions.
引用
收藏
页码:1254 / 1274
页数:21
相关论文
共 50 条
  • [11] Association of the Red Cell Distribution Width with Red Blood Cell Deformability
    Patel, Kushang V.
    Mohanty, Joy G.
    Kanapuru, Bindu
    Hesdorffer, Charles
    Ershler, William B.
    Rifkind, Joseph M.
    OXYGEN TRANSPORT TO TISSUE XXXIV, 2013, 765 : 211 - 216
  • [12] RED BLOOD-CELL DEFORMABILITY AND PROSTAGLANDINS
    JAY, AWL
    ROWLANDS, S
    SKIBO, L
    PROSTAGLANDINS, 1973, 3 (06): : 871 - 877
  • [13] Red blood cell deformability and diabetic nephropathy
    Schut, NH
    KIDNEY INTERNATIONAL, 2005, 68 (03) : 1370 - 1371
  • [14] Red blood cell deformability in multiple myeloma
    Caimi, Gregorio
    Carlisi, Melania
    Montana, Maria
    Galla, Eleonora
    Hopps, Eugenia
    Lo Presti, Rosalia
    Siragusa, Sergio
    CLINICAL HEMORHEOLOGY AND MICROCIRCULATION, 2018, 69 (1-2) : 233 - 238
  • [15] Effect of lanthanum on red blood cell deformability
    Alexy, Tamas
    Nemeth, Norbert
    Wenby, Rosalinda B.
    Bauersachs, Rupert M.
    Baskurt, Oguz K.
    Meiselman, Herbert J.
    BIORHEOLOGY, 2007, 44 (5-6) : 361 - 373
  • [16] Membranotropic photobiomodulation on red blood cell deformability
    Luo, Gang-Yue
    Zhao, Yan-Ping
    Liu, Jimon Cheng-Yi
    Liu, Song-Hao
    FIFTH INTERNATIONAL CONFERENCE ON PHOTONICS AND IMAGING IN BIOLOGY AND MEDICINE, PTS 1 AND 2, 2007, 6534
  • [17] Effect of pH on red blood cell deformability
    Kuzman, D
    Znidarcic, T
    Gros, M
    Vrhovec, S
    Svetina, S
    Zeks, B
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2000, 440 (05): : R193 - R194
  • [18] Effect of pH on red blood cell deformability
    Drago Kuzman
    Tadej Žnidarčič
    Marjan Gros
    Sonja Vrhovec
    Saša Svetina
    Boštjan Žekš
    Pflügers Archiv - European Journal of Physiology, 2000, 440 : R193 - R194
  • [19] Microfluidic analysis of red blood cell deformability
    Guo, Quan
    Duffy, Simon P.
    Matthews, Kerryn
    Santoso, Aline T.
    Scott, Mark D.
    Ma, Hongshen
    JOURNAL OF BIOMECHANICS, 2014, 47 (08) : 1767 - 1776
  • [20] RED CELL DEFORMABILITY AND CAPILLARY BLOOD FLOW
    BRAASCH, D
    PHYSIOLOGICAL REVIEWS, 1971, 51 (04) : 679 - &