Robust and sparse estimation methods for high-dimensional linear and logistic regression

被引:49
作者
Kurnaz, Fatma Sevinc [1 ]
Hoffmann, Irene [2 ]
Filzmoser, Peter [2 ]
机构
[1] Yildiz Tech Univ, Dept Stat, TR-34220 Istanbul, Turkey
[2] Vienna Univ Technol, Inst Stat & Math Method Econ, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Elastic net penalty; Least trimmed squares; C-step algorithm; High-dimensional data; Robustness; Sparse estimation; LARGE DATA SETS; SQUARES REGRESSION; REGULARIZATION; SELECTION; MODELS;
D O I
10.1016/j.chemolab.2017.11.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fully robust versions of the elastic net estimator are introduced for linear and logistic regression. The algorithms used to compute the estimators are based on the idea of repeatedly applying the non-robust classical estimators to data subsets only. It is shown how outlier-free subsets can be identified efficiently, and how appropriate tuning parameters for the elastic net penalties can be selected. A final reweighting step improves the efficiency of the estimators. Simulation studies compare with non-robust and other competing robust estimators and reveal the superiority of the newly proposed methods. This is also supported by a reasonable computation time and by good performance in real data examples.
引用
收藏
页码:211 / 222
页数:12
相关论文
共 23 条
[1]  
ALBERT A, 1984, BIOMETRIKA, V71, P1
[2]   SPARSE LEAST TRIMMED SQUARES REGRESSION FOR ANALYZING HIGH-DIMENSIONAL LARGE DATA SETS [J].
Alfons, Andreas ;
Croux, Christophe ;
Gelper, Sarah .
ANNALS OF APPLIED STATISTICS, 2013, 7 (01) :226-248
[3]  
[Anonymous], 2017, R LANG ENV STAT COMP
[4]  
Bianco V., 1996, LECT NOTES STAT, V109, P17
[5]   Implementing the Bianco and Yohai estimator for logistic regression [J].
Croux, C ;
Haesbroeck, G .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 44 (1-2) :273-295
[6]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[7]   Outlier identification in high dimensions [J].
Filzmoser, Peter ;
Maronna, Ricardo ;
Werner, Mark .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) :1694-1711
[8]   Review of sparse methods in regression and classification with application to chemometrics [J].
Filzmoser, Peter ;
Gschwandtner, Moritz ;
Todorov, Valentin .
JOURNAL OF CHEMOMETRICS, 2012, 26 (3-4) :42-51
[9]   Regularization Paths for Generalized Linear Models via Coordinate Descent [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Rob .
JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01) :1-22
[10]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&