Morphology-controllable graphene-TiO2 nanorod hybrid nanostructures for polymer composites with high dielectric performance

被引:136
作者
Wu, Chao [1 ]
Huang, Xingyi [1 ]
Xie, Liyuan [1 ]
Yu, Jinghong [1 ]
Jiang, Pingkai [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Key Lab Elect Insulat & Thermal Aging, Dept Polymer Sci & Engn, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
CARBON NANOTUBES; NANOCOMPOSITES; CONSTANT; PERMITTIVITY; FILMS; OXIDE; REDUCTION; SHEETS; MATRIX;
D O I
10.1039/c1jm12903a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High permittivity polymer-based materials are highly desirable due to their inherent advantages of being easy to process, flexible and light weight. Herein, a new strategy for the development of polymer composites with high permittivity and low dielectric loss has been proposed based on morphology-controllable graphene-TiO2 nanorod hybrid nanostructures. These hybrid nanostructures possess large aspect ratio, high surface area and high electric conductivity graphene sheets, which provide ideal electrodes in the construction of microcapacitors. In addition, the morphology-controllable TiO2 nanorod decoration effectively prevents direct contact between the graphene sheets in the composite, which give advantages for forming a large microcapacitor network and suppressing the leakage current. As a consequence, a polystyrene composite with 10.9 vol% graphene-TiO2 nanorod sheets exhibits a very high permittivity of 1741 at 10(2) Hz, which is 643 times higher than the value for pure polystyrene (2.7), and low dielectric loss (tan alpha) of only 0.39. The permittivity of the composites can be controlled by controlling the amount of nanorod decoration on the graphene substrates, which provides a new pathway for tuning the permittivity of polymer composites. We expect that our strategy of controlling filler interface will be applied to acquire more polymer composites with high permittivity and low dielectric loss.
引用
收藏
页码:17729 / 17736
页数:8
相关论文
共 55 条
[1]   Ceramic-polymer composites with high dielectric constant [J].
Arbatti, Milind ;
Shan, Xiaobing ;
Cheng, Zhongyang .
ADVANCED MATERIALS, 2007, 19 (10) :1369-+
[2]   Functional Composite Materials Based on Chemically Converted Graphene [J].
Bai, Hua ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2011, 23 (09) :1089-1115
[3]   Synthesis of Visible-Light Responsive Graphene Oxide/TiO2 Composites with p/n Heterojunction [J].
Chen, Chao ;
Cai, Weimin ;
Long, Mingce ;
Zhou, Baoxue ;
Wu, Yahui ;
Wu, Deyong ;
Feng, Yujie .
ACS NANO, 2010, 4 (11) :6425-6432
[4]   Percolative conductor/polymer composite films with significant dielectric properties [J].
Chen, Qian ;
Du, Piyi ;
Jin, Lu ;
Weng, Wenjian ;
Han, Gaorong .
APPLIED PHYSICS LETTERS, 2007, 91 (02)
[5]  
Chu BJ, 2006, SCIENCE, V313, P1887
[6]   Graphene-based composite materials with high dielectric permittivity via an in situ reduction method [J].
Cui, Lili ;
Lu, Xiaofeng ;
Chao, Danming ;
Liu, Hongtao ;
Li, Yongxin ;
Wang, Ce .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (02) :459-461
[7]   Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites [J].
Dang, Zhi-Min ;
Wang, Lan ;
Yin, Yi ;
Zhang, Qing ;
Lei, Qing-Qua .
ADVANCED MATERIALS, 2007, 19 (06) :852-+
[8]   Advanced Calcium Copper Titanate/Polyimide Functional Hybrid Films with High Dielectric Permittivity [J].
Dang, Zhi-Min ;
Zhou, Tao ;
Yao, Sheng-Hong ;
Yuan, Jin-Kai ;
Zha, Jun-Wei ;
Song, Hong-Tao ;
Li, Jian-Ying ;
Chen, Qiang ;
Yang, Wan-Tai ;
Bai, Jinbo .
ADVANCED MATERIALS, 2009, 21 (20) :2077-2082
[9]   Novel ferroelectric polymer composites with high dielectric constants [J].
Dang, ZM ;
Lin, YH ;
Nan, CW .
ADVANCED MATERIALS, 2003, 15 (19) :1625-+
[10]   Hierarchically Ordered Macro-Mesoporous TiO2-Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities [J].
Du, Jiang ;
Lai, Xiaoyong ;
Yang, Nailiang ;
Zhai, Jin ;
Kisailus, David ;
Su, Fabing ;
Wang, Dan ;
Jiang, Lei .
ACS NANO, 2011, 5 (01) :590-596