Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection

被引:223
作者
Zhao, Jia-Xing [1 ]
Cao, Yang [1 ]
Fan, Deng-Ping [1 ]
Cheng, Ming-Ming [1 ]
Li, Xuan-Yi [1 ]
Zhang, Le [2 ]
机构
[1] Nankai Univ, CS, TKLNDST, Tianjin, Peoples R China
[2] ASTAR, Singapore, Singapore
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
GRAPHICS;
D O I
10.1109/CVPR.2019.00405
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The large availability of depth sensors provides valuable complementary information for salient object detection (SOD) in RGBD images. However, due to the inherent difference between RGB and depth information, extracting features from the depth channel using ImageNet pre-trained backbone models and fusing them with RGB features directly are sub-optimal. In this paper, we utilize contrast prior; which used to be a dominant cue in none deep learning based SOD approaches, into CNNs-based architecture to enhance the depth information. The enhanced depth cues are further integrated with RGB features for SOD, using a novel fluid pyramid integration, which can make better use of multi-scale cross-modal features. Comprehensive experiments on 5 challenging benchmark datasets demonstrate the superiority of the architecture CPFP over 9 state-of-the-art alternative methods.
引用
收藏
页码:3922 / 3931
页数:10
相关论文
共 58 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]  
[Anonymous], 2017, IEEE Trans. Cybern.
[3]  
[Anonymous], 2016, CVPR, DOI DOI 10.1109/CVPR.2016.257
[4]  
[Anonymous], 2015, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2015.7298642
[5]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Sihite, Dicky N. ;
Itti, Laurent .
COMPUTER VISION - ECCV 2012, PT II, 2012, 7573 :414-429
[6]  
Borji Ali, 2012, P IEEE COMP SOC C CO, P23, DOI [DOI 10.1109/CVPRW.2012.6239191, 10.1109/CVPRW.2012.6239191]
[7]   Progressively Complementarity-aware Fusion Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3051-3060
[8]  
Chen TC, 2009, PROC EUR SOLID-STATE, P1
[9]  
Chen YX, 2014, INTERNATIONAL CONFERENCE ON MECHANICS AND MATERIALS ENGINEERING (ICMME 2014), P23
[10]  
Cheng MM, 2021, INT J COMPUT VISION, V129, P2622, DOI [10.1109/ICCV.2017.487, 10.1007/s11263-021-01490-8]