Extreme points of Banach lattices related to conditional expectations

被引:2
|
作者
Lin, PK [1 ]
机构
[1] Univ Memphis, Dept Math, Memphis, TN 38152 USA
关键词
conditional expectation; extreme point; Banach lattice; uniformly lambda-property;
D O I
10.1016/j.jmaa.2005.03.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, F, mu) be a complete probability space, beta a sub-sigma-algebra, and phi the probabilistic conditional expectation operator determined by beta. Let kappa be the Banach lattice {f is an element of L-1 (X, F, mu): parallel to phi(vertical bar f vertical bar)parallel to(infinity) < infinity} with the norm parallel to f parallel to = parallel to phi(vertical bar f vertical bar)parallel to(infinity). We prove the following theorems: (1) The closed unit ball of kappa contains an extreme point if and only if there is a localizing set E for beta such that supp (phi (chi(E))) = X. (2) Suppose that there is n is an element of N such that f <= n phi(f) for all positive f in L-infinity(X,.F, mu). Then kappa has the uniformly lambda-property and every element f in the complex kappa with parallel to f parallel to <= 1/n is a convex combination of at most 2n extreme points in the closed unit ball of kappa. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:138 / 147
页数:10
相关论文
共 50 条
  • [21] Classification of injective banach lattices
    A. G. Kusraev
    Doklady Mathematics, 2013, 88 : 630 - 633
  • [22] Komls properties in Banach lattices
    Emelyanov, E. Y.
    Erkursun-Ozcan, N.
    Gorokhova, S. G.
    ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) : 324 - 331
  • [23] Weak precompactness in Banach lattices
    Xiang, Bo
    Chen, Jinxi
    Li, Lei
    POSITIVITY, 2022, 26 (01)
  • [24] Martingales in Banach lattices, II
    Hailegebriel E. Gessesse
    Vladimir G. Troitsky
    Positivity, 2011, 15 : 49 - 55
  • [25] Domination problem in Banach lattices
    A. G. Kusraev
    Mathematical Notes, 2016, 100 : 66 - 79
  • [26] LATTICE EMBEDDINGS IN FREE BANACH LATTICES OVER LATTICES
    Aviles, Antonio
    Martinez-Cervantes, Gonzalo
    Rodriguez Abellan, Jose David
    Rueda Zoca, Abraham
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (02): : 495 - 509
  • [27] Measurable bundles of Banach lattices
    Kusraev, A. G.
    POSITIVITY, 2010, 14 (04) : 785 - 799
  • [28] Domination problem in Banach lattices
    Kusraev, A. G.
    MATHEMATICAL NOTES, 2016, 100 (1-2) : 66 - 79
  • [29] A Minimax Theorem in Banach Lattices
    Emma D'Aniello
    Positivity, 2000, 4 : 143 - 160
  • [30] Model-theoretic independence in the banach lattices Lp(µ)
    Itaï Ben Yaacov
    Alexander Berenstein
    C. Ward Henson
    Israel Journal of Mathematics, 2011, 183