Extreme points of Banach lattices related to conditional expectations

被引:2
|
作者
Lin, PK [1 ]
机构
[1] Univ Memphis, Dept Math, Memphis, TN 38152 USA
关键词
conditional expectation; extreme point; Banach lattice; uniformly lambda-property;
D O I
10.1016/j.jmaa.2005.03.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, F, mu) be a complete probability space, beta a sub-sigma-algebra, and phi the probabilistic conditional expectation operator determined by beta. Let kappa be the Banach lattice {f is an element of L-1 (X, F, mu): parallel to phi(vertical bar f vertical bar)parallel to(infinity) < infinity} with the norm parallel to f parallel to = parallel to phi(vertical bar f vertical bar)parallel to(infinity). We prove the following theorems: (1) The closed unit ball of kappa contains an extreme point if and only if there is a localizing set E for beta such that supp (phi (chi(E))) = X. (2) Suppose that there is n is an element of N such that f <= n phi(f) for all positive f in L-infinity(X,.F, mu). Then kappa has the uniformly lambda-property and every element f in the complex kappa with parallel to f parallel to <= 1/n is a convex combination of at most 2n extreme points in the closed unit ball of kappa. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:138 / 147
页数:10
相关论文
共 50 条
  • [11] SOME GEOMETRIC CONSTANTS AND THE EXTREME POINTS OF THE UNIT BALL OF BANACH SPACES
    Mizuguchi, Hiroyasu
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 60 (01): : 59 - 70
  • [12] Mean ergodicity on Banach lattices and Banach spaces
    Eduard Yu. Emel’yanov
    Manfred P.H. Wolff
    Archiv der Mathematik, 1999, 72 : 214 - 218
  • [13] On finite elements in vector lattices and Banach lattices
    Chen, ZL
    Weber, MR
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (5-6) : 495 - 501
  • [14] Simplifying conditional expectations
    Buhr, KA
    Carriere, JF
    APPLIED MATHEMATICS LETTERS, 1998, 11 (04) : 71 - 75
  • [15] Some approximation properties of Banach spaces and Banach lattices
    Tadeusz Figiel
    William B. Johnson
    Aleksander Pełczyński
    Israel Journal of Mathematics, 2011, 183
  • [16] A minimax theorem in Banach lattices
    D'Aniello, E
    POSITIVITY, 2000, 4 (02) : 143 - 160
  • [17] Bibasic sequences in Banach lattices
    Taylor, M. A.
    Troitsky, V. G.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (10)
  • [18] Weak precompactness in Banach lattices
    Bo Xiang
    Jinxi Chen
    Lei Li
    Positivity, 2022, 26
  • [19] Martingales in Banach lattices, II
    Gessesse, Hailegebriel E.
    Troitsky, Vladimir G.
    POSITIVITY, 2011, 15 (01) : 49 - 55
  • [20] Measurable bundles of Banach lattices
    A. G. Kusraev
    Positivity, 2010, 14 : 785 - 799