Short-Term Precipitation Prediction for Contiguous United States Using Deep Learning

被引:41
作者
Chen, Guoxing [1 ,2 ,3 ]
Wang, Wei-Chyung [4 ]
机构
[1] Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai, Peoples R China
[2] Fudan Univ, Inst Atmospher Sci, Shanghai, Peoples R China
[3] Shanghai Qi Zhi Inst, Shanghai, Peoples R China
[4] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA
基金
美国国家科学基金会;
关键词
precipitation prediction; VGG; deep learning; short-term weather prediction; neural network; DATA ASSIMILATION; NEURAL-NETWORKS; WEATHER; MODELS; RESOLUTION;
D O I
10.1029/2022GL097904
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurate short-term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state-of-the-art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather-model forecasts significantly improves the accuracy of model forecasts, especially for heavy-precipitation events. Furthermore, the millisecond-scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short-term weather predictions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Short-Term Prediction of the Dst Index and Estimation of Efficient Uncertainty Using a Hybrid Deep Learning Network
    Wang, Ruyao
    Wang, Jianhui
    Liang, Tuo
    Zhang, Huixiong
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2024, 22 (12):
  • [22] A short-term building cooling load prediction method using deep learning algorithms
    Fan, Cheng
    Xiao, Fu
    Zhao, Yang
    APPLIED ENERGY, 2017, 195 : 222 - 233
  • [23] Short-Term Prediction of PM2.5 Using LSTM Deep Learning Methods
    Kristiani, Endah
    Lin, Hao
    Jwu-Rong Lin
    Yen-Hsun Chuang
    Chin-Yin Huang
    Chao-Tung Yang
    SUSTAINABILITY, 2022, 14 (04)
  • [24] Early prediction of coronavirus disease epidemic severity in the contiguous United States based on deep learning
    Kao, I-Hsi
    Perng, Jau-Woei
    RESULTS IN PHYSICS, 2021, 25
  • [25] Using deep learning for short-term load forecasting
    Nadjib Mohamed Mehdi Bendaoud
    Nadir Farah
    Neural Computing and Applications, 2020, 32 : 15029 - 15041
  • [26] Short-term water quality variable prediction using a hybrid CNN-LSTM deep learning model
    Barzegar, Rahim
    Aalami, Mohammad Taghi
    Adamowski, Jan
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (02) : 415 - 433
  • [27] Prediction of solar cycle 25 using deep learning based long short-term memory forecasting technique
    Prasad, Amrita
    Roy, Soumya
    Sarkar, Arindam
    Panja, Subhash Chandra
    Patra, Sankar Narayan
    ADVANCES IN SPACE RESEARCH, 2022, 69 (01) : 798 - 813
  • [28] Exploring Deep Learning Approaches for Short-Term Passenger Demand Prediction
    Zahra Ghandeharioun
    Parham Zendehdel Nobari
    Wenhui Wu
    Data Science for Transportation, 2023, 5 (3):
  • [29] Assessing the Performance of Deep Learning Algorithms for Short-Term Surface Water Quality Prediction
    Choi, Heelak
    Suh, Sang-Ik
    Kim, Su-Hee
    Han, Eun Jin
    Ki, Seo Jin
    SUSTAINABILITY, 2021, 13 (19)
  • [30] Spectrum Prediction Based on Taguchi Method in Deep Learning With Long Short-Term Memory
    Yu, Ling
    Chen, Jin
    Ding, Guoru
    Tu, Ya
    Yang, Jian
    Sun, Jiachen
    IEEE ACCESS, 2018, 6 : 45923 - 45933