Short-Term Precipitation Prediction for Contiguous United States Using Deep Learning

被引:42
作者
Chen, Guoxing [1 ,2 ,3 ]
Wang, Wei-Chyung [4 ]
机构
[1] Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai, Peoples R China
[2] Fudan Univ, Inst Atmospher Sci, Shanghai, Peoples R China
[3] Shanghai Qi Zhi Inst, Shanghai, Peoples R China
[4] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA
基金
美国国家科学基金会;
关键词
precipitation prediction; VGG; deep learning; short-term weather prediction; neural network; DATA ASSIMILATION; NEURAL-NETWORKS; WEATHER; MODELS; RESOLUTION;
D O I
10.1029/2022GL097904
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurate short-term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state-of-the-art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather-model forecasts significantly improves the accuracy of model forecasts, especially for heavy-precipitation events. Furthermore, the millisecond-scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short-term weather predictions.
引用
收藏
页数:9
相关论文
共 46 条
[11]   Challenges and design choices for global weather and climate models based on machine learning [J].
Dueben, Peter D. ;
Bauer, Peter .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (10) :3999-4009
[12]   Assimilation of satellite data in numerical weather prediction. Part I: The early years [J].
Eyre, Jonathan Robert ;
English, Stephen J. ;
Forsythe, Mary .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (726) :49-68
[13]   Impact of Increasing Horizontal and Vertical Resolution during the HWRF Hybrid EnVar Data Assimilation on the Analysis and Prediction of Hurricane Patricia (2015) [J].
Feng, Jie ;
Wang, Xuguang .
MONTHLY WEATHER REVIEW, 2021, 149 (02) :419-441
[14]   The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) [J].
Gelaro, Ronald ;
McCarty, Will ;
Suarez, Max J. ;
Todling, Ricardo ;
Molod, Andrea ;
Takacs, Lawrence ;
Randles, Cynthia A. ;
Darmenov, Anton ;
Bosilovich, Michael G. ;
Reichle, Rolf ;
Wargan, Krzysztof ;
Coy, Lawrence ;
Cullather, Richard ;
Draper, Clara ;
Akella, Santha ;
Buchard, Virginie ;
Conaty, Austin ;
da Silva, Arlindo M. ;
Gu, Wei ;
Kim, Gi-Kong ;
Koster, Randal ;
Lucchesi, Robert ;
Merkova, Dagmar ;
Nielsen, Jon Eric ;
Partyka, Gary ;
Pawson, Steven ;
Putman, William ;
Rienecker, Michele ;
Schubert, Siegfried D. ;
Sienkiewicz, Meta ;
Zhao, Bin .
JOURNAL OF CLIMATE, 2017, 30 (14) :5419-5454
[15]   Deep learning for multi-year ENSO forecasts [J].
Ham, Yoo-Geun ;
Kim, Jeong-Hwan ;
Luo, Jing-Jia .
NATURE, 2019, 573 (7775) :568-+
[16]   A Moist Physics Parameterization Based on Deep Learning [J].
Han, Yilun ;
Zhang, Guang J. ;
Huang, Xiaomeng ;
Wang, Yong .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (09)
[17]   Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization [J].
Khain, A. P. ;
Beheng, K. D. ;
Heymsfield, A. ;
Korolev, A. ;
Krichak, S. O. ;
Levin, Z. ;
Pinsky, M. ;
Phillips, V. ;
Prabhakaran, T. ;
Teller, A. ;
van den Heever, S. C. ;
Yano, J. -I. .
REVIEWS OF GEOPHYSICS, 2015, 53 (02) :247-322
[18]   The Development of a Quantitative Precipitation Forecast Correction Technique Based on Machine Learning for Hydrological Applications [J].
Ko, Chul-Min ;
Jeong, Yeong Yun ;
Lee, Young-Mi ;
Kim, Byung-Sik .
ATMOSPHERE, 2020, 11 (01)
[19]   Complex hybrid models combining deterministic and machine learning components for numerical climate modeling and weather prediction [J].
Krasnopolsky, Vladimir M. ;
Fox-Rabinovitz, Michael S. .
NEURAL NETWORKS, 2006, 19 (02) :122-134
[20]   A Neural Network Nonlinear Multimodel Ensemble to Improve Precipitation Forecasts over Continental US [J].
Krasnopolsky, VladimirM. ;
Lin, Ying .
ADVANCES IN METEOROLOGY, 2012, 2012