Short-Term Precipitation Prediction for Contiguous United States Using Deep Learning

被引:42
作者
Chen, Guoxing [1 ,2 ,3 ]
Wang, Wei-Chyung [4 ]
机构
[1] Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai, Peoples R China
[2] Fudan Univ, Inst Atmospher Sci, Shanghai, Peoples R China
[3] Shanghai Qi Zhi Inst, Shanghai, Peoples R China
[4] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA
基金
美国国家科学基金会;
关键词
precipitation prediction; VGG; deep learning; short-term weather prediction; neural network; DATA ASSIMILATION; NEURAL-NETWORKS; WEATHER; MODELS; RESOLUTION;
D O I
10.1029/2022GL097904
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurate short-term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state-of-the-art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather-model forecasts significantly improves the accuracy of model forecasts, especially for heavy-precipitation events. Furthermore, the millisecond-scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short-term weather predictions.
引用
收藏
页数:9
相关论文
共 46 条
[1]   Advances in weather prediction [J].
Alley, Richard B. ;
Emanuel, Kerry A. ;
Zhang, Fuqing .
SCIENCE, 2019, 363 (6425) :342-344
[2]   The quiet revolution of numerical weather prediction [J].
Bauer, Peter ;
Thorpe, Alan ;
Brunet, Gilbert .
NATURE, 2015, 525 (7567) :47-55
[3]  
Bellouin N., 2021, CLIMATE CHANGE 2021
[4]   STOCHASTIC PARAMETERIZATION Toward a New View of Weather and Climate Models [J].
Berner, Judith ;
Achatz, Ulrich ;
Batte, Lauriane ;
Bengtsson, Lisa ;
de la Camara, Alvaro ;
Christensen, Hannah M. ;
Colangeli, Matteo ;
Coleman, Danielle R. B. ;
Crommelin, Daaaan ;
Dolaptchiev, Stamen I. ;
Franzke, Christian L. E. ;
Friederichs, Petra ;
Imkeller, Peter ;
Jarvinen, Heikki ;
Juricke, Stephan ;
Kitsios, Vassili ;
Lott, Francois ;
Lucarini, Valerio ;
Mahajan, Salil ;
Palmer, Timothy N. ;
Penland, Cecile ;
Sakradzija, Mirjana ;
von Storch, Jin-Song ;
Weisheimer, Antje ;
Weniger, Michael ;
Williams, Paul D. ;
Yano, Jun-Ichi .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2017, 98 (03) :565-587
[5]  
Bromberg C.L., 2019, Machine learning for precipitation nowcasting from radar images, P1
[6]   Data assimilation in the geosciences: An overview of methods, issues, and perspectives [J].
Carrassi, Alberto ;
Bocquet, Marc ;
Bertino, Laurent ;
Evensen, Geir .
WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE, 2018, 9 (05)
[7]   Opportunities and challenges for machine learning in weather and climate modelling: hard, medium and soft AI [J].
Chantry, Matthew ;
Christensen, Hannah ;
Dueben, Peter ;
Palmer, Tim .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2194)
[8]  
Chen M.Y., 2008, P W PAC GEOPH M CAIM
[9]   Assessing objective techniques for gauge-based analyses of global daily precipitation [J].
Chen, Mingyue ;
Shi, Wei ;
Xie, Pingping ;
Silva, Viviane B. S. ;
Kousky, Vernon E. ;
Higgins, R. Wayne ;
Janowiak, John E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D4)
[10]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597