Short-Term Precipitation Prediction for Contiguous United States Using Deep Learning

被引:40
|
作者
Chen, Guoxing [1 ,2 ,3 ]
Wang, Wei-Chyung [4 ]
机构
[1] Fudan Univ, Dept Atmospher & Ocean Sci, Shanghai, Peoples R China
[2] Fudan Univ, Inst Atmospher Sci, Shanghai, Peoples R China
[3] Shanghai Qi Zhi Inst, Shanghai, Peoples R China
[4] SUNY Albany, Atmospher Sci Res Ctr, Albany, NY 12222 USA
基金
美国国家科学基金会;
关键词
precipitation prediction; VGG; deep learning; short-term weather prediction; neural network; DATA ASSIMILATION; NEURAL-NETWORKS; WEATHER; MODELS; RESOLUTION;
D O I
10.1029/2022GL097904
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurate short-term weather prediction, essential for many aspects of life, relies mainly on forecasts from numerical weather models. Here, we report results supporting strongly deep learning as a viable, alternative approach. A 3D convolutional neural network, which uses a single frame of meteorology fields as input to predict the precipitation spatial distribution, is developed based on 39-years (1980-2018) data of meteorology and daily precipitation over the contiguous United States. Results show that the trained network outperforms the state-of-the-art weather models in predicting daily total precipitation, and the superiority of the network extends to forecast leads up to 5 days. Combining the network predictions with the weather-model forecasts significantly improves the accuracy of model forecasts, especially for heavy-precipitation events. Furthermore, the millisecond-scale inference time of the network facilitates large ensemble predictions for extra accuracy improvement. These results demonstrate the promising prospects of deep learning in short-term weather predictions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A Deep Learning Approach to Short-Term Quantitative Precipitation Forecasting
    Yadav, Nishant
    Ganguly, Auroop R.
    PROCEEDINGS OF 2020 10TH INTERNATIONAL CONFERENCE ON CLIMATE INFORMATICS (CI2020), 2020, : 8 - 14
  • [2] Machine-learning-based short-term forecasting of daily precipitation in different climate regions across the contiguous United States
    Valipour, Mohammad
    Khoshkam, Helaleh
    Bateni, Sayed M.
    Jun, Changhyun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [3] Deep learning for short-term traffic flow prediction
    Polson, Nicholas G.
    Sokolov, Vadim O.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2017, 79 : 1 - 17
  • [4] An Improved Bayesian Combination Model for Short-Term Traffic Prediction With Deep Learning
    Gu, Yuanli
    Lu, Wenqi
    Xu, Xinyue
    Qin, Lingqiao
    Shao, Zhuangzhuang
    Zhang, Hanyu
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) : 1332 - 1342
  • [5] Deep Learning Methods in Short-Term Traffic Prediction: A Survey
    Hou, Yue
    Zheng, Xin
    Han, Chengyan
    Wei, Wei
    Scherer, Rafal
    Polap, Dawid
    INFORMATION TECHNOLOGY AND CONTROL, 2022, 51 (01): : 139 - 157
  • [6] Short-Term Traffic Prediction Using Deep Learning Long Short-Term Memory: Taxonomy, Applications, Challenges, and Future Trends
    Khan, Anwar
    Fouda, Mostafa M.
    Do, Dinh-Thuan
    Almaleh, Abdulaziz
    Rahman, Atiq Ur
    IEEE ACCESS, 2023, 11 : 94371 - 94391
  • [7] A short-term building energy consumption prediction and diagnosis using deep learning algorithms
    Li, Xiang
    Yu, Junqi
    Wang, Qian
    Dong, Fangnan
    Cheng, Renyin
    Feng, Chunyong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (05) : 6831 - 6848
  • [8] Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)
    Skrobek, Dorian
    Krzywanski, Jaroslaw
    Sosnowski, Marcin
    Kulakowska, Anna
    Zylka, Anna
    Grabowska, Karolina
    Ciesielska, Katarzyna
    Nowak, Wojciech
    ENERGIES, 2020, 13 (24)
  • [9] Using deep learning for short-term load forecasting
    Bendaoud, Nadjib Mohamed Mehdi
    Farah, Nadir
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (18): : 15029 - 15041
  • [10] Short-Term Traffic Flow Prediction: An Integrated Method of Econometrics and Hybrid Deep Learning
    Cheng, Zeyang
    Lu, Jian
    Zhou, Huajian
    Zhang, Yibin
    Zhang, Lin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 5231 - 5244