Global Estimates for Quasilinear Elliptic Equations on Reifenberg Flat Domains

被引:128
作者
Mengesha, Tadele [1 ]
Nguyen Cong Phuc [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
LITTLEWOOD MAXIMAL-FUNCTION; WEIGHTED NORM INEQUALITIES; BMO COEFFICIENTS; GRADIENT; REGULARITY; MAPPINGS;
D O I
10.1007/s00205-011-0446-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New global regularity estimates are obtained for solutions to a class of quasilinear elliptic boundary value problems. The coefficients are assumed to have small BMO seminorms, and the boundary of the domain is sufficiently flat in the sense of Reifenberg. The main regularity estimates obtained are in weighted Lorentz spaces. Other regularity results in Lorentz-Morrey, Morrey, and Holder spaces are shown to follow from the main estimates.
引用
收藏
页码:189 / 216
页数:28
相关论文
共 43 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]   ON MORREY-BESOV INEQUALITIES [J].
ADAMS, DR ;
LEWIS, JL .
STUDIA MATHEMATICA, 1982, 74 (02) :169-182
[3]  
[Anonymous], 2001, Differential Integral Equations
[4]  
Auscher P, 2002, B UNIONE MAT ITAL, V5B, P487
[5]   Elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, SS ;
Wang, LH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) :1283-1310
[6]   Gradient estimates in Orlicz space for nonlinear elliptic equations [J].
Byun, Sun-Sig ;
Yao, Fengping ;
Zhou, Shulin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (08) :1851-1873
[7]   Elliptic equations with BMO nonlinearity in Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe .
ADVANCES IN MATHEMATICS, 2008, 219 (06) :1937-1971
[8]   Nonlinear elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe ;
Zhou, Shulin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (01) :167-196
[9]  
Caffarelli LA, 1998, COMMUN PUR APPL MATH, V51, P1
[10]   THE HARDY-LITTLEWOOD MAXIMAL-FUNCTION ON L(P,Q) SPACES WITH WEIGHTS [J].
CHUNG, HM ;
HUNT, RA ;
KURTZ, DS .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (01) :109-120