An additive (α,β)-functional equation and linear mappings in Banach spaces

被引:0
作者
Park, Choonkil [1 ]
机构
[1] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 04763, South Korea
关键词
Hyers-Ulam stability; additive; (alpha; beta)-functional equation; C-linear mapping; fixed point method; direct method; complex Banach space; CAUCHY FUNCTIONAL-EQUATION; GENERALIZED STABILITY; FIXED-POINTS;
D O I
10.1007/s11784-016-0283-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the additive ()-functional equation for all complex numbers with and for a fixed nonzero complex number . Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of this additive ()-functional equation in complex Banach spaces.
引用
收藏
页码:495 / 504
页数:10
相关论文
共 31 条
[1]  
[Anonymous], J FIXED POI IN PRESS
[2]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[3]   Hyperstability of the Jensen functional equation [J].
Bahyrycz, A. ;
Piszczek, M. .
ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) :353-365
[4]   On functions that are approximate fixed points almost everywhere and Ulam's type stability [J].
Bahyrycz, Anna ;
Brzdek, Janusz ;
Jablonska, Eliza ;
Olko, Jolanta .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2015, 17 (04) :659-668
[5]   On the functional equations related to a problem of Z. Boros and Z. Darczy [J].
Balcerowski, M. .
ACTA MATHEMATICA HUNGARICA, 2013, 138 (04) :329-340
[6]  
C adariu L., 2004, Grazer Mathematische Berichte, V346, P43
[7]   Fixed point methods for the generalized stability of functional equations in a single variable [J].
Cadariu, Liviu ;
Radu, Viorel .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[8]  
Cdariu L., 2003, J INEQUAL PURE APPL, V4, P4
[9]   On the generalized stability of d'Alembert functional equation [J].
Chahbi, Abdellatif ;
Bounader, Nordine .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2013, 6 (03) :198-204
[10]   A functional equation involving comparable weighted quasi-arithmetic means [J].
Daroczy, Z. ;
Maksa, G. Y. .
ACTA MATHEMATICA HUNGARICA, 2013, 138 (1-2) :147-155