Emerging X-ray imaging technologies for energy materials

被引:97
作者
Cao, Chuntian [1 ,2 ]
Toney, Michael F. [2 ]
Sham, Tsun-Kong [3 ]
Harder, Ross [4 ]
Shearing, Paul R. [5 ]
Xiao, Xianghui [6 ]
Wang, Jiajun [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Peoples R China
[2] SLAC Natl Accelerator Lab, SSRL Mat Sci Div, Menlo Pk, CA 94025 USA
[3] Univ Western Ontario, Dept Chem, London, ON N6A 5B9, Canada
[4] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
[5] UCL, Dept Chem Engn, Torrington Pl, London WC1E 7JE, England
[6] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
基金
中国国家自然科学基金;
关键词
LI-ION BATTERY; GAS-DIFFUSION LAYERS; IN-SITU; FUEL-CELLS; OPERATING-CONDITIONS; MICROSCOPY; NANOSCALE; BEAMLINE; CATHODE; VISUALIZATION;
D O I
10.1016/j.mattod.2019.08.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the growing need for sustainable energy technologies, advanced characterization methods become more and more critical for optimizing energy materials and understanding their operation mechanisms. In this review, we focus on the synchrotron-based X-ray imaging technologies and the associated applications in gaining fundamental insights into the physical/chemical properties and reaction mechanisms of energy materials. We will discuss a few major X-ray imaging technologies, including X-ray projection imaging, transmission X-ray microscopy, scanning transmission X-ray microscopy, tender and soft X-ray imaging, and coherent diffraction imaging. Researchers can choose from various X-ray imaging techniques with different working principles based on research goals and sample specifications. With the X-ray imaging techniques, we can obtain the morphology, phase, lattice and strain information of energy materials in both 2D and 3D in an intuitive way. In addition, with the high-penetration X-rays and the high-brilliance synchrotron sources, operando/in-situ experiments can be designed to track the qualitative and quantitative changes of the samples during operation. We expect this review can broaden readers' view on X-ray imaging techniques and inspire new ideas and possibilities in energy materials research.
引用
收藏
页码:132 / 147
页数:16
相关论文
共 121 条
[31]   PHASE RETRIEVAL ALGORITHMS - A COMPARISON [J].
FIENUP, JR .
APPLIED OPTICS, 1982, 21 (15) :2758-2769
[32]   Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits [J].
Finegan, Donal P. ;
Darcy, Eric ;
Keyser, Matthew ;
Tjaden, Bernhard ;
Heenan, Thomas M. M. ;
Jervis, Rhodri ;
Bailey, Josh J. ;
Malik, Romeo ;
Vo, Nghia T. ;
Magdysyuk, Oxana V. ;
Atwood, Robert ;
Drakopoulos, Michael ;
DiMichiel, Marco ;
Rack, Alexander ;
Hinds, Gareth ;
Brett, Dan J. L. ;
Shearing, Paul R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (06) :1377-1388
[33]   In-operando high-speed tomography of lithium-ion batteries during thermal runaway [J].
Finegan, Donal P. ;
Scheel, Mario ;
Robinson, James B. ;
Tjaden, Bernhard ;
Hunt, Ian ;
Mason, Thomas J. ;
Millichamp, Jason ;
Di Michiel, Marco ;
Offer, Gregory J. ;
Hinds, Gareth ;
Brett, Dan J. L. ;
Shearing, Paul R. .
NATURE COMMUNICATIONS, 2015, 6
[34]   Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy [J].
Gelb, Jeff ;
Finegan, Donal P. ;
Brett, Dan J. L. ;
Shearing, Paul R. .
JOURNAL OF POWER SOURCES, 2017, 357 :77-86
[35]   OpenPNM: A Pore Network Modeling Package [J].
Gostick, Jeff ;
Aghighi, Mahmoudreza ;
Hinebaugh, James ;
Tranter, Tom ;
Hoeh, Michael A. ;
Day, Harold ;
Spellacy, Brennan ;
Sharqawy, Mostafa H. ;
Bazylak, Aimy ;
Burns, Alan ;
Lehnert, Werner ;
Putz, Andreas .
COMPUTING IN SCIENCE & ENGINEERING, 2016, 18 (04) :60-74
[36]   Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells [J].
Gostick, Jeff T. ;
Ioannidis, Marios A. ;
Fowler, Michael W. ;
Pritzker, Mark D. .
JOURNAL OF POWER SOURCES, 2007, 173 (01) :277-290
[37]   Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode [J].
Grew, Kyle N. ;
Chu, Yong S. ;
Yi, Jaemock ;
Peracchio, Aldo A. ;
Izzo, John R., Jr. ;
Hwu, Yeukuang ;
De Carlo, Francesco ;
Chiu, Wilson K. S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (06) :B783-B792
[38]   A Structure and Durability Comparison of Membrane Electrode Assembly Fabrication Methods: Self-Assembled Versus Hot-Pressed [J].
Hack, Jennifer ;
Heenan, T. M. M. ;
Iacoviello, F. ;
Mansor, N. ;
Meyer, Q. ;
Shearing, P. ;
Brandon, N. ;
Brett, D. J. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (06) :F3045-F3052
[39]   In Situ Microtomographic Monitoring of Discharging Processes in Alkaline Cells [J].
Haibel, A. ;
Manke, I. ;
Melzer, A. ;
Banhart, J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A387-A391
[40]  
Harry KJ, 2014, NAT MATER, V13, P69, DOI [10.1038/NMAT3793, 10.1038/nmat3793]