Superconnections and parallel transport

被引:15
|
作者
Dumitrescu, Florin [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
superconnections; parallel transport; supermanifolds; supersymmetric field theories;
D O I
10.2140/pjm.2008.236.307
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This note addresses the construction of a notion of parallel transport along superpaths arising from the concept of a superconnection on a vector bundle over a manifold M. A superpath in M is, loosely speaking, a path in M together with an odd vector field in M along the path. We also develop a notion of parallel transport associated with a connection (also know as covariant derivative) on a vector bundle over a supermanifold, which is a direct generalization of the classical notion of parallel transport for connections over manifolds.
引用
收藏
页码:307 / 332
页数:26
相关论文
共 50 条
  • [31] A FANNING SCHEME FOR THE PARALLEL TRANSPORT ALONG GEODESICS ON RIEMANNIAN MANIFOLDS
    Louis, Maxime
    Charlier, Benjamin
    Jusselin, Paul
    Pal, Susovan
    Durrleman, Stanley
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) : 2563 - 2584
  • [32] Schild's ladder parallel transport procedure for an arbitrary connection
    Kheyfets, A
    Miller, WA
    Newton, GA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2000, 39 (12) : 2891 - 2898
  • [33] Algebraic and analytic parallel transport on p-adic curves
    Thomas Ludsteck
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2013, 83 : 83 - 99
  • [34] Parallel Transport on the Cone Manifold of SPD Matrices for Domain Adaptation
    Yair, Or
    Ben-Chen, Mirela
    Talmon, Ronen
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (07) : 1797 - 1811
  • [35] On the role of virtual work in Levi-Civita’s parallel transport
    Giuseppe Iurato
    Giuseppe Ruta
    Archive for History of Exact Sciences, 2016, 70 : 553 - 565
  • [36] Parallel Transport Unfolding: A Connection-Based Manifold Learning Approach
    Budninskiy, Max
    Yin, Gloria
    Feng, Leman
    Tong, Yiying
    Desbrun, Mathieu
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2019, 3 (02) : 266 - 291
  • [37] Parallel transport of fiber mode structure: Orbit-orbit interaction
    Chakravarthy, Pradeep T.
    Naik, Dinesh N.
    Viswanathan, Nirmal K.
    COMPLEX LIGHT AND OPTICAL FORCES XI, 2017, 10120
  • [38] On the role of virtual work in Levi-Civita's parallel transport
    Iurato, Giuseppe
    Ruta, Giuseppe
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 2016, 70 (05) : 553 - 565
  • [39] Geodesics, Parallel Transport & One-Parameter Subgroups for Diffeomorphic Image Registration
    Marco Lorenzi
    Xavier Pennec
    International Journal of Computer Vision, 2013, 105 : 111 - 127
  • [40] Parallel Transport Convolution: Deformable Convolutional Networks on Manifold-Structured Data
    Schonsheck, Stefan C.
    Dong, Bin
    Lai, Rongjie
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (01) : 367 - 386