Short-term load forecast using ensemble neuro-fuzzy model

被引:45
|
作者
Malekizadeh, M. [1 ]
Karami, H. [4 ]
Karimi, M. [2 ]
Moshari, A. [2 ]
Sanjari, M. J. [3 ]
机构
[1] Amirkabir Univ Technol, Elect Engn Dept, Tehran, Iran
[2] Niroo Res Inst, Dept Power Syst Planning & Operat, Tehran, Iran
[3] Griffith Univ, Sch Engn & Built Environm, Gold Coast, Qld 4222, Australia
[4] Niroo Res Inst, High Voltage Res Grp, Tehran, Iran
关键词
Short-term load forecasting; Neuro-fuzzy model; LOLIMOT training algorithm; Takagi-Sugeno-Kang model; Flexible network topology; NETWORK; ALGORITHM; ANFIS;
D O I
10.1016/j.energy.2020.117127
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, Takagi-Sugeno-Kang neuro-fuzzy model is trained using locally linear model tree (LOLIMOT) method to forecast day-ahead hourly load profile. The proposed approach is applied to a real load profile measured in Iran as a geographically spread case study. The effects of partitioning the power system to smaller regions on the load forecasting and its advantages, such as practical consideration of daily average temperature data, are also shown. Moreover, a set of preprocessing approaches is proposed and implemented on historical load data to improve forecasting results. It is shown that by using LOLIMOT, the neuro-fuzzy model does not need the predetermined settings, such as the number of neurons, membership functions or fuzzy rules by an expert because all the parameters are set by the LOLIMOT method. This approach leads to the flexible network topology of the trained model for different days, which leads to extract the load profile trends more effectively. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A decomposition-based approximate entropy cooperation long short-term memory ensemble model for short-term load forecasting
    Huang, Jiehui
    Li, Chunquan
    Huang, Zhengyu
    Liu, Peter X.
    ELECTRICAL ENGINEERING, 2022, 104 (03) : 1515 - 1525
  • [42] Study of the Short-Term Electric Load Forecast Based on ANFIS
    Peng, Junran
    Gao, Shengyu
    Ding, Anzi
    2017 32ND YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2017, : 832 - 836
  • [43] Monthly Precipitation Forecasting with a Neuro-Fuzzy Model
    Jeong, Changsam
    Shin, Ju-Young
    Kim, Taesoon
    Heo, Jun-Haneg
    WATER RESOURCES MANAGEMENT, 2012, 26 (15) : 4467 - 4483
  • [44] A decomposition-based approximate entropy cooperation long short-term memory ensemble model for short-term load forecasting
    Jiehui Huang
    Chunquan Li
    Zhengyu Huang
    Peter X. Liu
    Electrical Engineering, 2022, 104 : 1515 - 1525
  • [45] Gearbox health condition identification by neuro-fuzzy ensemble
    Long Zhang
    Guoliang Xiong
    Leping Liu
    Qingsong Cao
    Journal of Mechanical Science and Technology, 2013, 27 : 603 - 608
  • [46] A CLUSTERING-BASED FUZZY WAVELET NEURAL NETWORK MODEL FOR SHORT-TERM LOAD FORECASTING
    Kodogiannis, Vassilis S.
    Amina, Mahdi
    Petrounias, Ilias
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2013, 23 (05)
  • [47] Short-term Load Forecasting Based on Load Decomposition and Numerical Weather Forecast
    Lu Qiuyu
    Cai Qiuna
    Liu Sijie
    Yang Yun
    Yan Binjie
    Wang Yang
    Zhou Xinsheng
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017,
  • [48] Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    Osorio, G. J.
    Matias, J. C. O.
    Catalao, J. P. S.
    RENEWABLE ENERGY, 2015, 75 : 301 - 307
  • [49] Short-term Load forecasting by a new hybrid model
    Guo, Hehong
    Du, Guiqing
    Wu, Liping
    Hu, Zhiqiang
    PROCEEDINGS OF THE 1ST INTERNATIONAL WORKSHOP ON CLOUD COMPUTING AND INFORMATION SECURITY (CCIS 2013), 2013, 52 : 370 - 374