Short-term load forecast using ensemble neuro-fuzzy model

被引:45
|
作者
Malekizadeh, M. [1 ]
Karami, H. [4 ]
Karimi, M. [2 ]
Moshari, A. [2 ]
Sanjari, M. J. [3 ]
机构
[1] Amirkabir Univ Technol, Elect Engn Dept, Tehran, Iran
[2] Niroo Res Inst, Dept Power Syst Planning & Operat, Tehran, Iran
[3] Griffith Univ, Sch Engn & Built Environm, Gold Coast, Qld 4222, Australia
[4] Niroo Res Inst, High Voltage Res Grp, Tehran, Iran
关键词
Short-term load forecasting; Neuro-fuzzy model; LOLIMOT training algorithm; Takagi-Sugeno-Kang model; Flexible network topology; NETWORK; ALGORITHM; ANFIS;
D O I
10.1016/j.energy.2020.117127
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, Takagi-Sugeno-Kang neuro-fuzzy model is trained using locally linear model tree (LOLIMOT) method to forecast day-ahead hourly load profile. The proposed approach is applied to a real load profile measured in Iran as a geographically spread case study. The effects of partitioning the power system to smaller regions on the load forecasting and its advantages, such as practical consideration of daily average temperature data, are also shown. Moreover, a set of preprocessing approaches is proposed and implemented on historical load data to improve forecasting results. It is shown that by using LOLIMOT, the neuro-fuzzy model does not need the predetermined settings, such as the number of neurons, membership functions or fuzzy rules by an expert because all the parameters are set by the LOLIMOT method. This approach leads to the flexible network topology of the trained model for different days, which leads to extract the load profile trends more effectively. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A self-partitioning local neuro fuzzy model for short-term load forecasting in smart grids
    Tavassoli-Hojati, Z.
    Ghaderi, S. F.
    Iranmanesh, H.
    Hilber, P.
    Shayesteh, E.
    ENERGY, 2020, 199
  • [22] Determining the model for short-term load forecasting using fuzzy logic and ANFIS
    Urošević, Vladimir
    Soft Computing, 2024, 28 (19) : 11457 - 11470
  • [23] Short-term air temperature prediction by adaptive neuro-fuzzy inference system (ANFIS) and long short-term memory (LSTM) network
    Sekertekin, Aliihsan
    Bilgili, Mehmet
    Arslan, Niyazi
    Yildirim, Alper
    Celebi, Kerimcan
    Ozbek, Arif
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 2021, 133 (03) : 943 - 959
  • [24] A stacking neuro-fuzzy framework to forecast runoff from distributed meteorological stations
    Querales, Marvin
    Salas, Rodrigo
    Morales, Yerel
    Allende-Cid, Hector
    Rosas, Harvey
    APPLIED SOFT COMPUTING, 2022, 118
  • [25] Short-term Load Forecasting with LSTM based Ensemble Learning
    Wang, Lingxiao
    Mao, Shiwen
    Wilamowski, Bogdan
    2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 793 - 800
  • [26] Short-term load forecasting using Fuzzy Neural Network
    Shao, S
    Sun, YM
    FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN POWER SYSTEM CONTROL, OPERATION & MANAGEMENT, VOLS 1 AND 2, 1997, : 131 - 134
  • [27] Forecasting Short-Term Electricity Load Using Validated Ensemble Learning
    Sankalpa, Chatum
    Kittipiyakul, Somsak
    Laitrakun, Seksan
    ENERGIES, 2022, 15 (22)
  • [28] Using ARIMA model and neuro-fuzzy approach to forecast the climatic temperature in Mosul-Iraq
    Fadhil, Naam Salem
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2911 - 2920
  • [29] Short-Term Load Forecasting Using Regularized Greedy Forest-Based Ensemble Model
    Yiu, Binnie Wai-Keung
    Zhang, Tong
    Lee, Cheuk-Wing
    IEEE ACCESS, 2024, 12 : 112426 - 112439
  • [30] A new method for short-term photovoltaic power generation forecast based on ensemble model
    Zhang, Yunxiu
    Li, Bingxian
    Han, Zhiyin
    AIP ADVANCES, 2024, 14 (09)