Efficient Zn Metal Anode Enabled by O,N-Codoped Carbon Microflowers

被引:105
作者
Xu, Zhixiao [1 ]
Jin, Song [2 ,3 ]
Zhang, Nianji [1 ]
Deng, Wenjing [1 ]
Seo, Min Ho [2 ]
Wang, Xiaolei [1 ,2 ,3 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
[2] Korea Inst Energy Res, Fuel Cell Res & Demonstrat Ctr, Future Energy Res Div, Buan Gun 56332, Jeollabuk Do, South Korea
[3] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Gwangju 500712, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
dendrite-free zinc metal; carbon flower; O; N-codoped carbon; hierarchical self-assembly; polyimide; ORGANIC FRAMEWORK; BATTERY; LITHIUM; HOST;
D O I
10.1021/acs.nanolett.1c04709
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc metal anodes show great promise for cheap and safe energy storage devices. However, it remains challenging to regulate highly efficient Zn plating/stripping under a high depth of discharge (DOD). Guided by density functional theory calculation, we here synthesized an oxygen- and nitrogen-codoped carbon superstructure as an efficient host for high-DOD Zn metal anodes through rational monomer selection, polymer self-assembly, and structure-preserved carbonization. With microscale 3D hierarchical structures, microcrystalline graphitic layers, and zincophilic heteroatom dopants, a flower-shaped carbon (C-flower) host could guide Zn nucleation and growth in a heteroepitaxial mode, affording horizontal plating with a high Coulombic efficiency (CE) and long life. As a demonstration, the C-flower-hosted Zn anode was paired with both battery and supercapacitor cathodes and delivered large capacity/capacitance, fast rates, long life, and ca. 100% CE even under a high DOD, outclassing hostless Zn-based devices. As they possess cheap, scalable, and efficient features, C-flower hosts hold the potential for practical zinc-metal-based energy devices.
引用
收藏
页码:1350 / 1357
页数:8
相关论文
共 45 条
[1]   Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries [J].
An, Yongling ;
Tian, Yuan ;
Li, Yuan ;
Wei, Chuanliang ;
Tao, Yuan ;
Liu, Yongpeng ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
CHEMICAL ENGINEERING JOURNAL, 2020, 400
[2]   Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS2-Coated Zn Anode [J].
Bhoyate, Sanket ;
Mhin, Sungwook ;
Jeon, Jae-eun ;
Park, KyoungRyeol ;
Kim, Junyoung ;
Choi, Wonbong .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (24) :27249-27257
[3]   Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries [J].
Cai, Zhao ;
Ou, Yangtao ;
Wang, Jindi ;
Xiao, Run ;
Fu, Lin ;
Yuan, Zhu ;
Zhan, Renmin ;
Sun, Yongming .
ENERGY STORAGE MATERIALS, 2020, 27 :205-211
[4]   Fluorinated interphase enables reversible aqueous zinc battery chemistries [J].
Cao, Longsheng ;
Li, Dan ;
Pollard, Travis ;
Deng, Tao ;
Zhang, Bao ;
Yang, Chongyin ;
Chen, Long ;
Vatamanu, Jenel ;
Hu, Enyuan ;
Hourwitz, Matt J. ;
Ma, Lin ;
Ding, Michael ;
Li, Qin ;
Hou, Singyuk ;
Gaskell, Karen ;
Fourkas, John T. ;
Yang, Xiao-Qing ;
Xu, Kang ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2021, 16 (08) :902-+
[5]   An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zinc-Based Batteries [J].
Chen, Peng ;
Yuan, Xinhai ;
Xia, Yingbin ;
Zhang, Yi ;
Fu, Lijun ;
Liu, Lili ;
Yu, Nengfei ;
Huang, Qinghong ;
Wang, Bin ;
Hu, Xianwei ;
Wu, Yuping ;
van Ree, Teunis .
ADVANCED SCIENCE, 2021, 8 (11)
[6]   A manganese-hydrogen battery with potential for grid-scale energy storage [J].
Chen, Wei ;
Li, Guodong ;
Pei, Allen ;
Li, Yuzhang ;
Liao, Lei ;
Wang, Hongxia ;
Wan, Jiayu ;
Liang, Zheng ;
Chen, Guangxu ;
Zhang, Hao ;
Wang, Jiangyan ;
Cui, Yi .
NATURE ENERGY, 2018, 3 (05) :428-435
[7]   Flexible and conductive scaffold-stabilized zinc metal anodes for ultralong-life zinc-ion batteries and zinc-ion hybrid capacitors [J].
Dong, Liubing ;
Yang, Wu ;
Yang, Wang ;
Tian, Hao ;
Huang, Yongfeng ;
Wang, Xianli ;
Xu, Chengjun ;
Wang, Chengyin ;
Kang, Feiyu ;
Wang, Guoxiu .
CHEMICAL ENGINEERING JOURNAL, 2020, 384
[8]   Artificial N-doped Graphene Protective Layer Enables Stable Zn Anode for Aqueous Zn-ion Batteries [J].
Hao, Yutong ;
Zhou, Jiahui ;
Wei, Guangling ;
Liu, Anni ;
Zhang, Yixin ;
Mei, Yang ;
Lu, Baoping ;
Luo, Man ;
Xie, Man .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (06) :6364-6373
[9]   Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry [J].
Jia, Xiaoxiao ;
Liu, Chaofeng ;
Neale, Zachary G. ;
Yang, Jihui ;
Cao, Guozhong .
CHEMICAL REVIEWS, 2020, 120 (15) :7795-7866
[10]   Nanoporous CaCO3 Coatings Enabled Uniform Zn Stripping/Plating for Long-Life Zinc Rechargeable Aqueous Batteries [J].
Kang, Litao ;
Cui, Mangwei ;
Jiang, Fuyi ;
Gao, Yanfeng ;
Luo, Hongjie ;
Liu, Jianjun ;
Liang, Wei ;
Zhi, Chunyi .
ADVANCED ENERGY MATERIALS, 2018, 8 (25)