Compactness and existence results in weighted Sobolev spaces of radial functions. Part I: compactness

被引:12
作者
Badiale, Marino [1 ]
Guida, Michela [1 ]
Rolando, Sergio [1 ]
机构
[1] Univ Turin, I-10123 Turin, Italy
关键词
NONLINEAR SCHRODINGER-EQUATIONS; ELLIPTIC PROBLEMS;
D O I
10.1007/s00526-015-0817-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given two measurable functions and , , we define the weighted spaces and study the compact embeddings of the radial subspace of into , and thus into () as a particular case. Both super- and sub-quadratic exponents , and are considered. Our results do not require any compatibility between how the potentials and behave at the origin and at infinity, and essentially rely on power type estimates of their relative growth, not of the potentials separately. Applications to existence results for nonlinear elliptic problems like in , , will be given in a forthcoming paper.
引用
收藏
页码:1061 / 1090
页数:30
相关论文
共 29 条
[1]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[2]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   Nonlinear elliptic equations with subhomogeneous potentials [J].
Badiale, M. ;
Rolando, S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :602-617
[5]  
Badiale M., 2004, REND SEM MATH U POL, V62, P107
[6]  
Badiale M., 2007, Adv. Differ. Equ, V12, P1321
[7]  
Badiale M, ARXIV14033803
[8]  
Badiale M, COMPACTNESS EX UNPUB
[9]  
Badiale M, 2006, REND LINCEI-MAT APPL, V17, P1
[10]   Elliptic problems with singular potential and double-power nonlinearity [J].
Badiale, Marino ;
Rolando, Sergio .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2005, 2 (04) :417-436