Dispersive liquid-liquid microextraction coupled with microfluidic paper-based analytical device for the determination of organophosphate and carbamate pesticides in the water sample

被引:6
作者
Beshana, Sheleme [1 ]
Hussen, Ahmed [1 ]
Leta, Seyoum [1 ]
Kaneta, Takashi [2 ]
机构
[1] Addis Ababa Univ, Coll Nat & Computat Sci, Ctr Environm Sci, POB 1176, Addis Ababa, Ethiopia
[2] Okayama Univ, Grad Sch Nat Sci & Technol, Dept Chem, Okayama 7008530, Japan
关键词
Pesticide; Dispersive liquid-liquid microextraction; Microfluidic paper-based analytical device; Box-Behnken design; Inhibition percent; CHROMATOGRAPHY-MASS SPECTROMETRY; GAS-CHROMATOGRAPHY; EXPERIMENTAL-DESIGN; SOLVENT-EXTRACTION; FUNGICIDES; RESIDUES; VOLUME; SOIL; AID;
D O I
10.1007/s44211-022-00167-7
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A microfluidic paper-based analytical device (mu-PAD) is a promising new technology platform for the development of extremely low-cost sensing devices. However, it has low sensitivity that might not enable to measure maximum allowable concentration of various pollutants in the environment. In this study, a dispersive liquid-liquid microextraction (DLLME) was developed as a preconcentration method to enhance the sensitivity of the mu-PAD for trace analysis of selected pesticides. Four critical parameters (volume of n-hexane and acetone, extraction time, NaCl amount) that affect the efficiency of DLLME have been optimized using response surface methodology. An acceptable mean recovery of 79-97% and 83-93% was observed at 1 mu g L-1 and 5 mu g L-1 fortification level, respectively, with very good repeatability (2.2-6.01% RSD) and reproducibility (5.60-10.41% RSD). Very high enrichment factors ranging from 317 to 1471 were obtained. The limits of detection for the studied analytes were in the range of 0.18-0.41 mu g L-1 which is much lower than the WHO limits of 5-50 mu g L-1 for similar category of analytes. Therefore, by coupling DLLME with mu-PAD, a sensitivity that allows to detect environmental threat and also that surpassed most of the previous reports have been achieved in this study. This implies that the preconcentration step has a paramount contribution to address the sensitivity problem associated with mu-PAD.
引用
收藏
页码:1359 / 1367
页数:9
相关论文
共 50 条
  • [1] Dispersive liquid–liquid microextraction coupled with microfluidic paper-based analytical device for the determination of organophosphate and carbamate pesticides in the water sample
    Sheleme Beshana
    Ahmed Hussen
    Seyoum Leta
    Takashi Kaneta
    Analytical Sciences, 2022, 38 : 1359 - 1367
  • [2] Ionic liquid based dispersive liquid-liquid microextraction for the extraction of pesticides from bananas
    Ravelo-Perez, Lidia M.
    Hernandez-Borges, Javier
    Asensio-Ramos, Maria
    Angel Rodriguez-Delgado, Miguel
    JOURNAL OF CHROMATOGRAPHY A, 2009, 1216 (43) : 7336 - 7345
  • [3] Application of dispersive liquid-liquid microextraction combined with high-performance liquid chromatography to the determination of carbamate pesticides in water samples
    Wu, Qiuhua
    Zhou, Xin
    Li, Yuemin
    Zang, Xiaohuan
    Wang, Chun
    Wang, Zhi
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009, 393 (6-7) : 1755 - 1761
  • [4] Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for the determination of three carbamate pesticides in water samples
    He, Lijun
    Wang, Chunjian
    Sun, Yinjuan
    Luo, Xianli
    Zhang, Jing
    Lu, Kui
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2009, 89 (06) : 439 - 448
  • [5] Determination of some carbamate pesticides in watermelon and tomato samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography
    Liu, Zhimei
    Liu, Weihua
    Rao, Huan
    Feng, Tao
    Li, Chao
    Wang, Chun
    Wang, Zhi
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2012, 92 (05) : 571 - 581
  • [6] Dispersive liquid-liquid microextraction and liquid chromatographic determination of pentachlorophenol in water
    Farhadi, Khalil
    Farajzadeh, Mir A.
    Matin, Amir A.
    Hashemi, Paria
    CENTRAL EUROPEAN JOURNAL OF CHEMISTRY, 2009, 7 (03): : 369 - 374
  • [7] Multivariate Optimization of Operational Parameters in Microfluidic Paper-Based Analytical Devices for the Determination of Organophosphate and Carbamate Pesticides
    Beshana, Sheleme
    Hussen, Ahmed
    Leta, Seyoum
    Kaneta, Takashi
    JOURNAL OF ANALYTICAL CHEMISTRY, 2023, 78 (01) : 25 - 34
  • [8] Surfactant-less water emulsion based dispersive liquid-liquid microextraction for determination of organophosphorus pesticides in aqueous samples
    Farajzadeh, Mir Ali
    Mogaddam, Mohammad Reza Afshar
    Esrafili, Leili
    ANALYTICAL METHODS, 2015, 7 (18) : 7899 - 7906
  • [9] Hydrophobic Eutectic Solvent-Based Dispersive Liquid-Liquid Microextraction Applied to the Analysis of Pesticides in Wine
    Dal Bosco, Chiara
    Mariani, Francesca
    Gentili, Alessandra
    MOLECULES, 2022, 27 (03):
  • [10] Ionic liquid-based dispersive liquid-liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample
    He, Lijun
    Luo, Xianli
    Xie, Hongxue
    Wang, Chunjian
    Jiang, Xiuming
    Lu, Kui
    ANALYTICA CHIMICA ACTA, 2009, 655 (1-2) : 52 - 59