On a class of strongly hyperbolic systems

被引:3
作者
Bernardi, E
Bove, A
机构
[1] Univ Bologna, Dipartimento Matemat, IT-40127 Bologna, Italy
[2] Ist Nazl Fis Nucl, Sez Bologna, IT-40126 Bologna, Italy
来源
ARKIV FOR MATEMATIK | 2005年 / 43卷 / 01期
关键词
D O I
10.1007/BF02383613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a well-posedness result for the Cauchy problem. We study a class of first order hyperbolic differential [2] operators of rank zero on ail involutive submanifold of T(*)R(n+1)\{0} and prove that under suitable assumptions on the symmetrizability of the lifting of the principal symbol to a natural blow up of the "singular part" of the characteristic set, the operator is strongly hyperbolic.
引用
收藏
页码:113 / 131
页数:19
相关论文
共 10 条
[1]  
[Anonymous], 1974, RUSS MATH SURV, V29, P1, DOI DOI 10.1070/RM1974V029N05ABEH001295
[2]  
[Anonymous], 1985, ANAL PARTIAL DIFFERE
[3]  
BERNARDI E, 1992, OSAKA J MATH, V29, P129
[4]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE WELL-POSEDNESS OF THE CAUCHY-PROBLEM FOR A CLASS OF HYPERBOLIC OPERATORS WITH TRIPLE CHARACTERISTICS [J].
BERNARDI, E ;
BOVE, A .
JOURNAL D ANALYSE MATHEMATIQUE, 1990, 54 :21-59
[5]   Necessary conditions for hyperbolic systems [J].
Bove, A ;
Nishitani, T .
BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (06) :445-479
[6]  
Kajitani K., 1973, PUBL RES I MATH SCI, V9, P597
[7]   MICROLOCAL STRUCTURE OF INVOLUTIVE CONICAL REFRACTION [J].
MELROSE, RB ;
UHLMANN, GA .
DUKE MATHEMATICAL JOURNAL, 1979, 46 (03) :571-582
[8]  
NISHITANI T, 1995, OSAKA J MATH, V32, P41
[9]  
Nishitani T, 2003, INT SOC ANAL APP COM, V10, P237
[10]   NECESSARY CONDITIONS FOR STRONG HYPERBOLICITY OF 1ST-ORDER SYSTEMS [J].
NISHITANI, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1993, 61 :181-229