Convergence of locally homogeneous spaces

被引:4
作者
Pediconi, Francesco [1 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Locally homogenous Riemannian spaces; Convergence of Riemannian manifolds; COLLAPSING RIEMANNIAN-MANIFOLDS; LONG-TIME BEHAVIOR; RICCI FLOW;
D O I
10.1007/s10711-020-00542-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study three different topologies on the moduli space H-m(loc) of equivariant local isometry classes of m-dimensional locally homogeneous Riemannian spaces. As an application, we provide the first examples of locally homogeneous spaces converging to a limit space in the pointed C-k,C-alpha-topology, for some k > 1, which do not admit any convergent subsequence in the pointed Ck+1-topology.
引用
收藏
页码:105 / 127
页数:23
相关论文
共 30 条
  • [1] [Anonymous], 1986, Partial differential relations
  • [2] [Anonymous], 1990, Springer Series in Soviet Mathematics
  • [3] [Anonymous], 1969, FDN DIFFERENTIAL GEO
  • [4] Berger M., 1971, Le Spectre D'une Variete Riemannienne, V194
  • [5] Besse A.L, 2008, CLASSICS MATH
  • [6] Optimal Curvature Estimates for Homogeneous Ricci Flows
    Boehm, Christoph
    Lafuente, Ramiro
    Simon, Miles
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (14) : 4431 - 4468
  • [7] Immortal homogeneous Ricci flows
    Boehm, Christoph
    Lafuente, Ramiro A.
    [J]. INVENTIONES MATHEMATICAE, 2018, 212 (02) : 461 - 529
  • [8] On the long time behavior of homogeneous Ricci flows
    Boehm, Christoph
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2015, 90 (03) : 543 - 571
  • [9] CHEEGER J, 1986, J DIFFER GEOM, V23, P309
  • [10] CHEEGER J, 1990, J DIFFER GEOM, V32, P269