A high-performance lab-on-a-chip liquid sensor employing surface acoustic wave resonance: part II

被引:11
作者
Kustanovich, K. [1 ]
Yantchev, V [1 ]
Olivefors, A. [1 ]
Doosti, B. Ali [1 ]
Lobovkina, T. [1 ]
Jesorka, A. [1 ]
机构
[1] Chalmers Univ Technol, Biophys Technol Lab, Dept Chem & Chem Engn, Kemivagen 10, S-41296 Gothenburg, Sweden
关键词
microfluidics; surface acoustic wave; sensor; resonance; biochemical; CALCIUM; SENSITIVITY;
D O I
10.1088/1361-6439/aaf411
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We recently introduced an in-liquid sensing concept based on surface acoustic resonance (SAR) in a lab-on-a-chip resonant device with one electrical port. The 185 MHz one-port SAR sensor has a sensitivity comparable to other surface acoustic wave (SAW) in-liquid sensors, while offering a high quality factor (Q) in water, low impedance, and fairly low susceptibility to viscous damping. In this work, we present significant design and performance enhancements of the original sensor presented in part I. A novel 'lateral energy confinement' (LEC) design is introduced, where the spatially varying reflectivity of the SAW reflectors enables strong SAW localization inside the sensing domain at resonance. An improvement in mass-sensitivity greater than 100% at resonance is achieved, while the measurement noise stays below 0.5 ppm. Sensing performance was evaluated through real-time measurements of the binding of 40nm neutravidin-coated SiO2 nanoparticles to a biotin-labeled lipid bilayer. Two complementary sensing parameters are studied, the shift of resonance frequency and the shift of conductance magnitude at resonance.
引用
收藏
页数:8
相关论文
共 19 条
[1]   New Love wave liquid sensor operating at 2 GHz using an integrated micro-flow channel [J].
Assouar, M. B. ;
Kirsch, P. ;
Alnot, P. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2009, 20 (09)
[2]   Membrane Tubulation in Lipid Vesicles Triggered by the Local Application of Calcium Ions [J].
Doosti, Baharan Ali ;
Pezeshkian, Weria ;
Bruhn, Dennis S. ;
Ipsen, John H. ;
Khandelia, Himanshu ;
Jeffries, Gavin D. M. ;
Lobovidna, Tatsiana .
LANGMUIR, 2017, 33 (41) :11010-11017
[3]   Study of the sensitivity of the acoustic waveguide sensor [J].
Gizeli, E .
ANALYTICAL CHEMISTRY, 2000, 72 (24) :5967-5972
[4]  
Go DB, 2017, ANAL METHODS-UK, V9, P4112, DOI [10.1039/C7AY00690J, 10.1039/c7ay00690j]
[5]   Calcium-ion-controlled nanoparticle-induced tubulation in supported flat phospholipid vesicles [J].
Gozen, Irep ;
Billerit, Celine ;
Dommersnes, Paul ;
Jesorka, Aldo ;
Orwar, Owe .
SOFT MATTER, 2011, 7 (20) :9706-9713
[6]   Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation [J].
Hohmann, Siegfried ;
Koegel, Svea ;
Brunner, Yvonne ;
Schmieg, Barbara ;
Ewald, Christina ;
Kirschhoefer, Frank ;
Brenner-Weiss, Gerald ;
Laenge, Kerstin .
SENSORS, 2015, 15 (05) :11873-11888
[7]   Recent developments in thin film electro-acoustic technology for biosensor applications [J].
Katardjiev, I. ;
Yantchev, V. .
VACUUM, 2012, 86 (05) :520-531
[8]   A liquid-phase sensor using shear horizontal surface acoustic wave devices [J].
Kondoh, Jun .
ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2013, 96 (02) :41-49
[9]   A high-performance lab-on-a-chip liquid sensor employing surface acoustic wave resonance [J].
Kustanovich, K. ;
Yantchev, V. ;
Kirejev, V. ;
Jeffries, G. D. M. ;
Lobovkina, T. ;
Jesorka, A. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2017, 27 (11)
[10]   The use of electrochemical impedance spectroscopy for biosensing [J].
Lisdat, F. ;
Schaefer, D. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2008, 391 (05) :1555-1567