Hybrid of porous cobalt oxide nanospheres and nitrogen-doped graphene for applications in lithium-ion batteries and oxygen reduction reaction

被引:80
作者
Zhang, Mengmeng [1 ]
Li, Rong [1 ]
Chang, Xiaoxuan [1 ]
Xue, Chao [1 ]
Gou, Xinglong [1 ]
机构
[1] China West Normal Univ, Coll Chem & Chem Engn, Chem Synth & Pollut Control Key Lab Sichuan Prov, Nanchong 637000, Peoples R China
基金
中国国家自然科学基金;
关键词
Cobalt oxides; Nitrogen-doped graphene; Nanocomposites; Li-ion batteries; Oxygen reduction; Electrocatalysts; ANODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; STORAGE PERFORMANCE; ENERGY-STORAGE; REVERSIBLE CAPACITY; CO3O4; NANOPARTICLES; FUEL-CELLS; CARBON; NANOCOMPOSITES; NANOSHEETS;
D O I
10.1016/j.jpowsour.2015.04.178
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new single-source precursor has been developed from the hydrothermal reaction of graphite oxide (GO), melamine resin (MR) monomers, and CoCl2 to prepare a sandwich-like hybrid of ultrathin nitrogen-doped graphene (NG) sheets and porous Co3O4 nanospheres (Co3O4/NG). This unique structure endows the Co3O4/NG hybrid with large surface area and enhanced electrochemical performances as both anode material for Li-ion batteries and electrocatalyst for oxygen reduction reaction (ORR). As an anode material, it exhibits high reversible capacity, excellent cycling stability and rate performance (1236 and 489 mAh g(-1) over 200 cycles at 0.1C and 2C, respectively; 371 mAh g(-1) at 5C). As an ORR electrocatalyst, it shows superior catalytic activity and high selectivity for the four-electron reduction pathway compared to the bare Co3O4 and NG alone. Moreover, the Co3O4/NG hybrid is insensitive to methanol, and is much more stable than Pt/C catalyst over long term operation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 51 条
[51]   High density Co3O4 nanoparticles confined in a porous graphene nanomesh network driven by an electrochemical process: ultra-high capacity and rate performance for lithium ion batteries [J].
Zhu, Xiao ;
Ning, Guoqing ;
Ma, Xinlong ;
Fan, Zhuangjun ;
Xu, Chenggen ;
Gao, Jinsen ;
Xu, Chunming ;
Wei, Fei .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (44) :14023-14030