Local a posteriori error estimates for boundary element methods

被引:0
作者
Schulz, H [1 ]
Wendland, WL [1 ]
机构
[1] Univ Stuttgart, Inst Math A, D-70569 Stuttgart, Germany
来源
ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS | 1998年
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an integral equation Au = f with a strongly elliptic integral operator A and given right-hand side f. For solving that equation we use the spline Galerkin method. We begin with some localized error estimates which are based on a localization of the error equation and the commutator property for pseudodifferential operators. One obtains an error estimate on fixed parts of the boundary surface with remainder terms which are asymptotically of smaller order with respect to the meshsize than the error itself. To prove mesh-dependent localized error estimates, the main difficulty is the generalization of the commutator property of pseudodifferential operators for non-smooth truncation functions. We obtain a mesh-dependent localized error estimate with an explicit relation between the smoothness of the truncation function which is related to the size of the local supports and the size of the remainder terms.
引用
收藏
页码:564 / 571
页数:4
相关论文
共 19 条
[1]  
[Anonymous], 1972, MATH FDN FINITE ELEM
[2]  
[Anonymous], APPL ANAL
[3]  
CARSTENSEN C, 1995, MATH COMPUT, V64, P483, DOI 10.1090/S0025-5718-1995-1277764-7
[4]  
COSTABEL M, 1988, NUMER MATH, V54, P339, DOI 10.1007/BF01396766
[5]  
FAERMANN B, 1993, THESIS U KIEL
[6]  
FAERMANN B, 1996, IN PRESS NUMER MATH
[7]  
FAERMANN B, 1997, 9710 U KIEL
[8]   Asymptotic and A posteriori error estimates for boundary element solutions of hypersingular integral equations [J].
Feistauer, M ;
Hsiao, GC ;
Kleinman, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (02) :666-685
[9]  
Hormander L., 1985, ANAL LINEAR PARTIAL
[10]  
HSIAO GC, 1981, J INTEGRAL EQUAT, V3, P299