Blow-up and propagation of disturbances for fast diffusion equations

被引:3
|
作者
Mainge, Paul-Emile [1 ]
机构
[1] Univ Antilles Guyane, GRIMMAG, Dept Sci Interfacultaire, F-97230 Martinique, France
关键词
fast diffusion; finite blow-up time; Cauchy problem;
D O I
10.1016/j.na.2007.04.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Cauchy problem for the fast diffusion equation u(t) - Delta u(m) = alpha u(p1) in R-N (N >= 1), where m epsilon (0, 1), p(1) > 1 and alpha > 0. The initial condition u(0) is assumed to be continuous, nonnegative and bounded. Using a technique of subsolutions, we set up sufficient conditions on the initial value u(0) so that u(t, x) blows up in finite time, and we show how to get estimates on the profile of u(t, x) for small enough values of t > 0. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3913 / 3922
页数:10
相关论文
共 50 条
  • [31] On the blow-up rate for fast blow-up solutions arising in an anisotropic crystalline motion
    Ishiwata, T
    Yazaki, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 159 (01) : 55 - 64
  • [32] Blow-up time estimates and simultaneous blow-up of solutions in nonlinear diffusion problems
    Liu, Bingchen
    Wu, Guicheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (02) : 597 - 614
  • [33] Blow-up and blow-up rate for a reaction-diffusion model with multiple nonlinearities
    Song, XF
    Zheng, SN
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (02) : 279 - 289
  • [34] BLOW-UP FOR NONLINEAR MAXWELL EQUATIONS
    D'Ancona, Piero
    Nicaise, Serge
    Schnaubelt, Roland
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [35] Boundary blow-up and degenerate equations
    Kichenassamy, S
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 215 (02) : 271 - 289
  • [36] Blow-up in nonlinear heat equations
    Dejak, Steven
    Gang, Zhou
    Sigal, Israel Michael
    Wang, Shuangcai
    ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (04) : 433 - 481
  • [37] On blow-up of solution for Euler equations
    Behr, E
    Necas, J
    Wu, HY
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (02): : 229 - 238
  • [38] BLOW-UP IN NONLINEAR SCHROEDINGER EQUATIONS .2. SIMILARITY STRUCTURE OF THE BLOW-UP SINGULARITY
    RYPDAL, K
    RASMUSSEN, JJ
    PHYSICA SCRIPTA, 1986, 33 (06): : 498 - 504
  • [39] GLOBAL EXISTENCE AND BLOW-UP FOR THE FAST DIFFUSION EQUATION WITH A MEMORY BOUNDARY CONDITION
    Deng, Keng
    Wang, Qian
    QUARTERLY OF APPLIED MATHEMATICS, 2016, 74 (01) : 189 - 199
  • [40] Blow-up solutions for localized reaction-diffusion equations with variable exponents
    Liu, Bingchen
    Li, Fengjie
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (14) : 1778 - 1788