Classification of proper biharmonic hypersurfaces in pseudo-Riemannian space forms

被引:11
|
作者
Liu, Jiancheng [1 ]
Du, Li [1 ,2 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
[2] Dingxi Teachers Coll, Dept Math, Dingxi 743000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Proper biharmonic hypersurfaces; Pseudo-Riemannian space forms; Diagonalizable shape operator; Principal curvatures; SUBMANIFOLDS;
D O I
10.1016/j.difgeo.2015.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give some examples of proper biharmonic hypersurfaces in de Sitter space S-q(n+1)(c) and anti-de Sitter space H-q(n+1)(c), and prove a classification theorem of nondegenerate proper biharmonic hypersurfaces with diagonalizable shape operator and at most two distinct principal curvatures in pseudo-Riemannian space forms N-q(n+1) (c). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 122
页数:13
相关论文
共 50 条