Constrained minimum vertex cover in bipartite graphs: complexity and parameterized algorithms

被引:42
作者
Chen, H [1 ]
Kanj, IA
机构
[1] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
[2] Depaul Univ, Sch CTI, Chicago, IL 60604 USA
基金
美国国家科学基金会;
关键词
vertex cover; bipartite graph; graph matching; parameterized computation;
D O I
10.1016/j.jcss.2003.09.003
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Motivated by the research in reconfigurable memory array structures, this paper studies the complexity and algorithms for the constrained minimum vertex cover problem on bipartite graphs (MIN-CVCB) defined as follows: given a bipartite graph G = (V, E) with vertex bipartition V = U boolean OR L and two integers k(u) and k(l), decide whether there is a minimum vertex cover in G with at most k(u) vertices in U and at most k(l) vertices in L. It is proved in this paper that the MIN-CVCB problem is NP-complete. This answers a question posed by Hasan and Liu. A parameterized algorithm is developed for the problem, in which classical results in matching theory and recently developed techniques in parameterized computation theory are nicely combined and extended. The algorithm runs in time O(1.26(ku + kl) + (k(u) + k(l))\G\) and significantly improves previous algorithms for the problem. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:833 / 847
页数:15
相关论文
共 22 条
[11]  
Henglein F., 1994, Journal of Functional Programming, V4, P435, DOI 10.1017/S0956796800001143
[12]   EFFICIENT SPARE ALLOCATION FOR RECONFIGURABLE ARRAYS [J].
KUO, SY ;
FUCHS, WK .
IEEE DESIGN & TEST OF COMPUTERS, 1987, 4 (01) :24-31
[13]  
Lichtenstein O, 1985, P 12 ACM S PRINC PRO, P97, DOI DOI 10.1145/318593.318622
[14]   A new class of efficient algorithms for reconfiguration of memory arrays [J].
Low, CP ;
Leong, HW .
IEEE TRANSACTIONS ON COMPUTERS, 1996, 45 (05) :614-618
[15]  
Micali S., 1980, 21st Annual Symposium on Foundations of Computer Science, P17
[16]   VERTEX PACKINGS - STRUCTURAL-PROPERTIES AND ALGORITHMS [J].
NEMHAUSER, GL ;
TROTTER, LE .
MATHEMATICAL PROGRAMMING, 1975, 8 (02) :232-248
[17]  
Niedermeier R, 1999, LECT NOTES COMPUT SC, V1563, P561
[18]   A general method to speed up fixed-parameter-tractable algorithms [J].
Niedermeier, R ;
Rossmanith, P .
INFORMATION PROCESSING LETTERS, 2000, 73 (3-4) :125-129
[19]  
Nilsson N.J., 1980, PRINCIPLES ARTIFICIA
[20]  
Plummer MichaelD., 1986, Matching theory, V29