Elastic waves in quasiperiodic structures

被引:20
作者
Velasco, VR [1 ]
Zárate, JE [1 ]
机构
[1] CSIC, Inst Ciencia Mat, Madrid 28049, Spain
关键词
elastic waves; multilayers; superlattices; quasiperiodic systems;
D O I
10.1016/S0079-6816(01)00038-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the transverse and sagittal elastic waves in different quasiperiodic structures by means of the full transfer-matrix technique and surface Green-function matching method. The quasiperiodic structures follow Fibonacci, Thue-Morse and Rudin-Shapiro sequences, respectively. We consider finite structures having stress-free bounding surfaces and different generation orders, including up to more than 1000 interfaces. We obtain the dispersion relations for elastic waves and spatial localization of the different modes. The fragmentation of the spectrum for different sequences is evident for intermediate generation orders, in the case of transverse elastic waves, whereas, for sagittal elastic waves, higher generation orders are needed to show clearly the spectrum fragmentation. The results of Fibonacci and Thue-Morse sequences exhibit similarities not present in the results of Rudin-Shapiro sequences. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:383 / 402
页数:20
相关论文
共 27 条
  • [1] RAMAN-SCATTERING BY ACOUSTIC PHONONS IN FIBONACCI GAAS-ALAS SUPERLATTICES
    BAJEMA, K
    MERLIN, R
    [J]. PHYSICAL REVIEW B, 1987, 36 (08): : 4555 - 4557
  • [2] REMARKS ON THE SPECTRAL PROPERTIES OF TIGHT-BINDING AND KRONIG-PENNEY MODELS WITH SUBSTITUTION SEQUENCES
    BOVIER, A
    GHEZ, JM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (08): : 2313 - 2324
  • [3] RAMAN-SCATTERING IN FIBONACCI SUPERLATTICES
    DHARMAWARDANA, MWC
    MACDONALD, AH
    LOCKWOOD, DJ
    BARIBEAU, JM
    HOUGHTON, DC
    [J]. PHYSICAL REVIEW LETTERS, 1987, 58 (17) : 1761 - 1764
  • [4] Sagittal elastic waves in Fibonacci superlattices
    Fernandez-Alvarez, L
    Velasco, VR
    [J]. PHYSICAL REVIEW B, 1998, 57 (22) : 14141 - 14147
  • [5] Garcia-Moliner F., 1992, Theory of Single and Multiple Interfaces
  • [6] A GENERAL-THEORY OF MATCHING FOR LAYERED SYSTEMS
    GARCIAMOLINER, F
    PEREZALVAREZ, R
    RODRIGUEZCOPPOLA, H
    VELASCO, VR
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (08): : 1405 - 1420
  • [7] QUASI-CRYSTALS AND CRYSTALLINE APPROXIMANTS
    GOLDMAN, AI
    KELTON, RF
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (01) : 213 - 230
  • [8] ENERGY BANDS AND WAVE FUNCTIONS IN PERIODIC POTENTIALS
    JAMES, HM
    [J]. PHYSICAL REVIEW, 1949, 76 (11): : 1602 - 1610
  • [9] QUASICRYSTALS - A NEW CLASS OF ORDERED STRUCTURES
    LEVINE, D
    STEINHARDT, PJ
    [J]. PHYSICAL REVIEW LETTERS, 1984, 53 (26) : 2477 - 2480
  • [10] RAMAN-SCATTERING IN A GAAS GA1-XALXAS FIBONACCI SUPERLATTICE
    LOCKWOOD, DJ
    MACDONALD, AH
    AERS, GC
    DHARMAWARDANA, MWC
    DEVINE, RLS
    MOORE, WT
    [J]. PHYSICAL REVIEW B, 1987, 36 (17): : 9286 - 9289