AN EXTENSION OF FURSTENBERG'S THEOREM OF THE INFINITUDE OF PRIMES

被引:3
|
作者
Javier de Vega, F. [1 ]
机构
[1] King Juan Carlos Univ, Madrid, Spain
来源
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS | 2022年 / 53卷 / 01期
关键词
Furstenberg's proof; arithmetic progression; arithmetic generated by a sequence; polygonal numbers; Peano arithmetic;
D O I
10.17654/0972555522002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The usual product m . n on Z can be viewed as the sum of n terms of an arithmetic progression whose first term is a(l) = m - n + 1 and whose difference is d = 2. Generalizing this idea, we define new similar product mappings, and we consider new arithmetics that enable us to extend Furstenberg's theorem of the infinitude of primes. We also review the classic conjectures in the new arithmetics. Finally, we make important extensions of the main idea. We see that given any integer sequence, the approach generates an arithmetic on integers.
引用
收藏
页码:21 / 43
页数:23
相关论文
共 34 条
  • [1] ON THE INFINITUDE OF TWIN-PRIMES
    Feng, Bao Qi
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 33 (02): : 75 - 112
  • [2] TOPOLOGICAL ASPECTS OF INFINITUDE OF PRIMES IN ARITHMETIC PROGRESSIONS
    Marko, Frantisek
    Porubsky, Stefan
    COLLOQUIUM MATHEMATICUM, 2015, 140 (02) : 221 - 237
  • [3] An Extension of Sylvester's Theorem on Arithmetic Progressions
    Munagi, Augustine O.
    de Vega, Francisco Javier
    SYMMETRY-BASEL, 2023, 15 (06):
  • [4] THE GOLDBACH-VINOGRDOV THEOREM WITH THREE PRIMES IN A THIN SUBSET
    LIU JIANYA
    (Department of Mathematics
    ChineseAnnalsofMathematics, 1998, (04) : 479 - 488
  • [5] The polynomial multidimensional Szemerédi Theorem along shifted primes
    Nikos Frantzikinakis
    Bernard Host
    Bryna Kra
    Israel Journal of Mathematics, 2013, 194 : 331 - 348
  • [6] A multi-dimensional Szemer,di theorem for the primes via a correspondence principle
    Tao, Terence
    Ziegler, Tamar
    ISRAEL JOURNAL OF MATHEMATICS, 2015, 207 (01) : 203 - 228
  • [7] A multi-dimensional Szemerédi theorem for the primes via a correspondence principle
    Terence Tao
    Tamar Ziegler
    Israel Journal of Mathematics, 2015, 207 : 203 - 228
  • [8] The Green-Tao theorem for primes of the form x2 + y2+1
    Sun, Yu-Chen
    Pan, Hao
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (04): : 715 - 733
  • [9] Tanaka's theorem revisited
    Bahrami, Saeideh
    ARCHIVE FOR MATHEMATICAL LOGIC, 2020, 59 (7-8) : 865 - 877
  • [10] Tanaka’s theorem revisited
    Saeideh Bahrami
    Archive for Mathematical Logic, 2020, 59 : 865 - 877