Potential distribution on random electrical networks

被引:2
作者
Qian, Da-qian [1 ]
Zhang, Xiao-dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrical network; potential distribution; random graphs; RANDOM GRAPHS;
D O I
10.1007/s10255-011-0091-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let N = (G, c) be a random electrical network obtained by assigning a certain resistance for each edge in a random graph G is an element of G (n,p) and the potentials on the boundary vertices. In this paper, we prove that with high probability the potential distribution of all vertices of G is very close to a constant.
引用
收藏
页码:549 / 559
页数:11
相关论文
共 20 条
[1]  
[Anonymous], 2006, Random Graph Dynamics
[2]  
[Anonymous], 1984, CARUS MATH MONOGR
[3]  
[Anonymous], 2001, RANDOM GRAPHS
[4]  
[Anonymous], 2013, Modern graph theory
[5]  
[Anonymous], 1979, Reversibility and Stochastic Networks
[6]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[7]   AN ALGORITHM FOR FINDING HAMILTON PATHS AND CYCLES IN RANDOM GRAPHS [J].
BOLLOBAS, B ;
FENNER, TI ;
FRIEZE, AM .
COMBINATORICA, 1987, 7 (04) :327-341
[8]   The cover time of sparse random graphs [J].
Cooper, Colin ;
Frieze, Alan .
RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (1-2) :1-16
[9]   THE DIRICHLET TO NEUMANN MAP FOR A RESISTOR NETWORK [J].
CURTIS, EB ;
MORROW, JA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (04) :1011-1029
[10]   CRITICAL PHENOMENA FOR SPITZERS REVERSIBLE NEAREST PARTICLE-SYSTEMS [J].
GRIFFEATH, D ;
LIGGETT, TM .
ANNALS OF PROBABILITY, 1982, 10 (04) :881-895