Representations of Lie conformal algebras related to Galilean conformal algebras

被引:1
作者
Han, Xiu [1 ,2 ]
Wang, Dengyin [1 ]
Xia, Chunguang [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] Xuzhou Univ Technol, Sch Math & Phys, Xuzhou, Jiangsu, Peoples R China
关键词
Conformal module; extension problem; Galilean conformal algebra; Lie conformal algebra; COHOMOLOGY;
D O I
10.1080/00927872.2021.2007393
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the representation theory of Lie conformal analogues r(a, b) of certain Galilean conformal algebras, where a, b are complex numbers. We first classify their finite irreducible conformal modules, and then solve the extension problem. In particular, we obtain several classes of new indecomposable conformal modules over r(a, b).
引用
收藏
页码:2427 / 2438
页数:12
相关论文
共 18 条
  • [1] Tensionless strings and Galilean Conformal Algebra
    Bagchi, Arjun
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05):
  • [2] Galilean conformal algebras and AdS/CFT
    Bagchi, Arjun
    Gopakumar, Rajesh
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (07):
  • [3] On representations and correlation functions of Galilean conformal algebras
    Bagchi, Arjun
    Mandal, Ipsita
    [J]. PHYSICS LETTERS B, 2009, 675 (3-4) : 393 - 397
  • [4] Cohomology of conformal algebras
    Bakalov, B
    Kac, VG
    Voronov, AA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (03) : 561 - 598
  • [6] Cheng S., 1998, TOPOLOGICAL FIELD TH, V160
  • [7] Cheng S., 1997, ASIAN J MATH, V1, P181, DOI [10.4310/AJM.1997.v1.n1.a6, DOI 10.4310/AJM.1997.V1.N1.A6, DOI 10.4310/AJM.1997.v1.n1.a6]
  • [8] Cheng S., 1998, ASIAN J MATH, V2, P153, DOI [10.4310/AJM.1998.v2.n1.a5, DOI 10.4310/AJM.1998.V2.N1.A5]
  • [9] D'Andrea A., 1998, SEL MATH-NEW SER, V4, P377, DOI [10.1007/s000290050036, DOI 10.1007/s000290050036]
  • [10] Lie Conformal Algebra Cohomology and the Variational Complex
    De Sole, Alberto
    Kac, Victor G.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (03) : 667 - 719