Probabilistic deformation of contact geometry, diffusion processes and their quadratures

被引:0
|
作者
Lescot, Paul [1 ]
Zambrini, Jean-Claude [2 ]
机构
[1] Univ Picardie Jules Verne, CNRS, LAMFA, UMR 6140,Sous Equipe Probab & Theorie Ergodique, 33 Rue St Leu, F-80039 Amiens, France
[2] Univ Lisbon, Grp Fisica-Matem, Lisbon, Portugal
来源
SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V | 2008年 / 59卷
关键词
diffusion processes; contact geometry;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical contact geometry is an odd-dimensional analogue of symplectic geometry. We show that a natural probabilistic deformation of contact geometry, compatible with the very irregular trajectories of diffusion processes, allows one to construct the stochastic version of a number of basic geometrical tools, like, for example, Lionville measure. Moreover, it provides an unified framework to understand the origin of explicit relations (cf. "quadrature") between diffusion processes, useful in many fields. Various applications are given, including one in stochastic finance.
引用
收藏
页码:203 / +
页数:3
相关论文
共 50 条
  • [41] Regression equations modelling diffusion processes
    Anikin, VM
    Barulina, YA
    Goloubentsev, AF
    APPLIED SURFACE SCIENCE, 2003, 215 (1-4) : 185 - 190
  • [42] Inference for Convolutionally Observed Diffusion Processes
    Nakakita, Shogo H.
    Uchida, Masayuki
    ENTROPY, 2020, 22 (09)
  • [43] Excursions of diffusion processes and continued fractions
    Comtet, Alain
    Tourigny, Yves
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (03): : 850 - 874
  • [44] LP-estimates on diffusion processes
    Yan, LT
    Zhu, B
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (02) : 418 - 435
  • [45] On boundary crossing probabilities for diffusion processes
    Borovkov, K.
    Downes, A. N.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2010, 120 (02) : 105 - 129
  • [46] ON INTERSECTIONS OF INDEPENDENT NONDEGENERATE DIFFUSION PROCESSES
    Chen, Zhenlong
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (01) : 141 - 161
  • [47] Stochastic differential inclusions and diffusion processes
    Kisielewicz, Michal
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) : 1039 - 1054
  • [48] Contact geometry at the undersurface of the acromion with and without a rotator cuff tear
    Lee, SB
    Itoi, E
    O'Driscoll, SW
    An, KN
    ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 2001, 17 (04) : 365 - 372
  • [49] Detailed wheel/rail geometry processing with the conformal contact approach
    Edwin Vollebregt
    Multibody System Dynamics, 2021, 52 : 135 - 167
  • [50] Contact geometry in the restricted three-body problem: a survey
    Agustin Moreno
    Journal of Fixed Point Theory and Applications, 2022, 24