Probabilistic deformation of contact geometry, diffusion processes and their quadratures

被引:0
|
作者
Lescot, Paul [1 ]
Zambrini, Jean-Claude [2 ]
机构
[1] Univ Picardie Jules Verne, CNRS, LAMFA, UMR 6140,Sous Equipe Probab & Theorie Ergodique, 33 Rue St Leu, F-80039 Amiens, France
[2] Univ Lisbon, Grp Fisica-Matem, Lisbon, Portugal
来源
SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V | 2008年 / 59卷
关键词
diffusion processes; contact geometry;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical contact geometry is an odd-dimensional analogue of symplectic geometry. We show that a natural probabilistic deformation of contact geometry, compatible with the very irregular trajectories of diffusion processes, allows one to construct the stochastic version of a number of basic geometrical tools, like, for example, Lionville measure. Moreover, it provides an unified framework to understand the origin of explicit relations (cf. "quadrature") between diffusion processes, useful in many fields. Various applications are given, including one in stochastic finance.
引用
收藏
页码:203 / +
页数:3
相关论文
共 50 条
  • [31] Thermodynamic Entropy as a Noether Invariant from Contact Geometry
    Bravetti, Alessandro
    Garcia-Ariza, Miguel Angel
    Tapias, Diego
    ENTROPY, 2023, 25 (07)
  • [32] Contact Geometry of One-Dimensional Complex Foliations
    Tomassini, Giuseppe
    Venturini, Sergio
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (02) : 661 - 676
  • [33] Contact geometry and quantum thermodynamics of nanoscale steady states
    Ghosh, Aritra
    Bandyopadhyay, Malay
    Bhamidipati, Chandrasekhar
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 585
  • [34] Computational study on the effect of contact geometry on fretting behaviour
    Zhang, T.
    McHugh, P. E.
    Leen, S. B.
    WEAR, 2011, 271 (9-10) : 1462 - 1480
  • [35] Numerical integration in Celestial Mechanics: a case for contact geometry
    Bravetti, Alessandro
    Seri, Marcello
    Vermeeren, Mats
    Zadra, Federico
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2020, 132 (01)
  • [36] Numerical integration in Celestial Mechanics: a case for contact geometry
    Alessandro Bravetti
    Marcello Seri
    Mats Vermeeren
    Federico Zadra
    Celestial Mechanics and Dynamical Astronomy, 2020, 132
  • [37] Effect of the Contact Geometry on Nanoscale and Subnanoscale Friction Behaviors
    Yoon, Hong Min
    Lee, Joon Sang
    IEEE TRANSACTIONS ON MAGNETICS, 2017, 53 (03)
  • [38] Surface morphology, contact size and contact geometry effects on grease-lubricated fretting contacts
    Philippon, David
    Baydoun, Soha
    Fouvry, Siegfried
    WEAR, 2023, 522
  • [39] ABOUT FILTERING PROBLEM OF DIFFUSION PROCESSES
    Asadullin, E. M.
    Nasyrov, F. S.
    UFA MATHEMATICAL JOURNAL, 2011, 3 (02): : 3 - 9
  • [40] Assessment of diffusion processes in thin films
    Kaltenbach, T
    Graf, W
    Kohl, M
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 54 (1-4) : 363 - 368