Probabilistic deformation of contact geometry, diffusion processes and their quadratures

被引:0
|
作者
Lescot, Paul [1 ]
Zambrini, Jean-Claude [2 ]
机构
[1] Univ Picardie Jules Verne, CNRS, LAMFA, UMR 6140,Sous Equipe Probab & Theorie Ergodique, 33 Rue St Leu, F-80039 Amiens, France
[2] Univ Lisbon, Grp Fisica-Matem, Lisbon, Portugal
来源
SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS V | 2008年 / 59卷
关键词
diffusion processes; contact geometry;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical contact geometry is an odd-dimensional analogue of symplectic geometry. We show that a natural probabilistic deformation of contact geometry, compatible with the very irregular trajectories of diffusion processes, allows one to construct the stochastic version of a number of basic geometrical tools, like, for example, Lionville measure. Moreover, it provides an unified framework to understand the origin of explicit relations (cf. "quadrature") between diffusion processes, useful in many fields. Various applications are given, including one in stochastic finance.
引用
收藏
页码:203 / +
页数:3
相关论文
共 50 条
  • [21] Contact geometry for simple thermodynamical systems with friction
    Anahory Simoes, Alexandre
    de Leon, Manuel
    Lainz Valcazar, Manuel
    Martin de Diego, David
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2241):
  • [22] Generalized contact geometry and T-duality
    Aldi, Marco
    Grandini, Daniele
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 92 : 78 - 93
  • [23] On the Effect of Contact Geometry on Fretting Fatigue Life Under Cyclic Contact Loading
    Majzoobi, G. H.
    Abbasi, F.
    TRIBOLOGY LETTERS, 2017, 65 (04)
  • [24] On the Effect of Contact Geometry on Fretting Fatigue Life Under Cyclic Contact Loading
    G. H. Majzoobi
    F. Abbasi
    Tribology Letters, 2017, 65
  • [25] On diffusion processes with drift in Ld
    Krylov, N. V.
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (1-2) : 165 - 199
  • [26] Microfoundations for diffusion price processes
    Pakkanen, Mikko S.
    MATHEMATICS AND FINANCIAL ECONOMICS, 2010, 3 (02) : 89 - 114
  • [27] Diffusion processes on the Thoma cone
    G. I. Olshanski
    Functional Analysis and Its Applications, 2016, 50 : 237 - 240
  • [28] Adaptive estimation in diffusion processes
    Hoffmann, M
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 79 (01) : 135 - 163
  • [29] Microfoundations for diffusion price processes
    Mikko S. Pakkanen
    Mathematics and Financial Economics, 2010, 3 : 89 - 114
  • [30] Diffusion processes on the Thoma cone
    Olshanski, G. I.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2016, 50 (03) : 237 - 240