Nanoparticle-based electrochemical DNA detection

被引:266
作者
Wang, J [1 ]
机构
[1] New Mexico State Univ, Dept Chem & Biochem, Dept 3C, Las Cruces, NM 88003 USA
关键词
nanoparticles; DNA; electrochemistry; nanotechnology; stripping voltarnmetry; electrochemical coding;
D O I
10.1016/S0003-2670(03)00725-6
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nanoscale architectures of DNA-linked particle networks are attractive for electrical detection of DNA hybridization. This article reviews a variety of new nanoparticle/polynucleotide assemblies for advanced electrical detection of DNA sequences. Recent activity has led to innovative and powerful nanoparticle-based electrochemical DNA hybridization assays based on a variety of detection schemes. Such protocols rely on the use of colloidal gold tags, semiconductor quantum dot tracers, polymeric carrier (amplification) beads, or magnetic (separation) beads. Particularly useful have been protocols based on capturing of metal nanoparticle tracers followed by dissolution and anodic-stripping voltammetric measurement of the metal tag. Remarkable sensitivity is achieved by coupling particle-based amplification units and various amplification processes. The use of nanoparticle tracers for designing multi-target electrochemical coding protocols will also be documented. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:247 / 257
页数:11
相关论文
共 50 条
[41]   Nanoparticle-based biosensing using interfacial electrokinetic transduction [J].
Crivellari, Francesca ;
Mavrogiannis, Nicholas ;
Gagnon, Zachary .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 240 :926-933
[42]   Role of Cyclodextrins in Nanoparticle-Based Drug Delivery Systems [J].
Shelley, Haley ;
Babu, R. Jayachandra .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2018, 107 (07) :1741-1753
[43]   Ferric nanoparticle-based resonance light scattering determination of DNA at nanogram levels [J].
Cheng, Yongqiang ;
Li, Zhengping ;
Su, Yuqin ;
Fan, Yongshan .
TALANTA, 2007, 71 (04) :1757-1761
[44]   Triple lines gold nanoparticle-based lateral flow assay for enhanced and simultaneous detection of Leishmania DNA and endogenous control [J].
Lourdes Rivas ;
Alfredo de la Escosura-Muñiz ;
Lorena Serrano ;
Laura Altet ;
Olga Francino ;
Armand Sánchez ;
Arben Merkoçi .
Nano Research, 2015, 8 :3704-3714
[45]   Nanoparticle-based computing architecture for nanoparticle neural networks [J].
Kim, Sungi ;
Kim, Namjun ;
Seo, Jinyoung ;
Park, Jeong-Eun ;
Song, Eun Ho ;
Choi, So Young ;
Kim, Ji Eun ;
Cha, Seungsang ;
Park, Ha H. ;
Nam, Jwa-Min .
SCIENCE ADVANCES, 2020, 6 (35)
[46]   Evaluation of Pt-Rh Nanoparticle-Based Electrodes for the Electrochemical Reduction of Nitrogen to Ammonia [J].
Amrine, Roumayssa ;
Montiel, Miguel A. ;
Montiel, Vicente ;
Solla-Gullon, Jose .
ELECTROCATALYSIS, 2024, 15 (2-3) :239-250
[47]   Highly sensitive nanoparticle-based immunoassays with elemental detection: Application to Prostate-Specific Antigen quantification [J].
Garcia-Cortes, Marta ;
Ruiz Encinar, Jorge ;
Costa-Fernandez, Jose M. ;
Sanz-Medel, Alfredo .
BIOSENSORS & BIOELECTRONICS, 2016, 85 :128-134
[48]   Magnetic nanoparticle-based cancer nanodiagnostics [J].
Yousaf, Muhammad Zubair ;
Yu Jing ;
Hou Yang-Long ;
Gao Song .
CHINESE PHYSICS B, 2013, 22 (05)
[49]   Gold nanoparticle-based colorimetric detection of mercury ion via coordination chemistry [J].
Du, Jianjun ;
Wang, Zhenkuan ;
Fan, Jiangli ;
Peng, Xiaojun .
SENSORS AND ACTUATORS B-CHEMICAL, 2015, 212 :481-486
[50]   Nanoparticle-Based Delivery Systems for Vaccines [J].
Bezbaruah, Rajashri ;
Chavda, Vivek P. ;
Nongrang, Lawandashisha ;
Alom, Shahnaz ;
Deka, Kangkan ;
Kalita, Tutumoni ;
Ali, Farak ;
Bhattacharjee, Bedanta ;
Vora, Lalitkumar .
VACCINES, 2022, 10 (11)